Q)
If \(( x-a)^2 + (y-b)^2 = c^2\), for some \( c > 0\), prove that $\Large\frac{\begin{bmatrix} 1 + \left(\frac{dy}{dx}\right)^2 \\[0.3em] \end{bmatrix}^{\frac{\Large 3}{\Large 2}}}{\Large\frac{d^2y}{dx^2}}$is a constant independent of \(a\) and \(b\).
1 Answer
...