Q)
Let \(f : R \to R\) be the Signum Function defined as \[ f(x) = \left \{ \begin {array} {1 1} 1, & \quad \text { x $>$ 0} \\ 0, & \quad \text { x $=$0} \\-1, & \quad \text { x $<$0} \\ \end {array} \right. \] and \(g:R \to R\) be the greatest Integer Function given by \(g(x)=[x]\) where \([x]\) is a greatest integer less thar or equal to \(x\) Then, does \(fog\) and \(gof\) coincide in \((0,1]\)?.
1 Answer
...