Q)
Show that { $\bigl(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \bigr) $, $\bigl(\begin{smallmatrix} \omega & 0 \\ 0 & \omega^2\end{smallmatrix} \bigr) $, $\bigl(\begin{smallmatrix} \omega^2 & 0 \\ 0 & \omega\end{smallmatrix} \bigr) $, $\bigl(\begin{smallmatrix} 0 & 1 \\ 1 & 0\end{smallmatrix} \bigr) $, $\bigl(\begin{smallmatrix} 0 & \omega^2\\ \omega & 0\end{smallmatrix} \bigr) $, $\bigl(\begin{smallmatrix} 0 & \omega\\ \omega^2 & 0\end{smallmatrix} \bigr) $} where $\omega^3 = 1, \omega \neq 1$ form a group with respect to matrix multiplication.
1 Answer
...