$\begin{array}{1 1} (i) when \;\gamma\; is \;low\; then\; \phi\; is\; positive \qquad (ii) \alpha= \alpha_r , then\; \phi \;is\; zero. \qquad (iii) when\; \gamma > \gamma _r , then \;\phi\;\;is\; negative \\ (i) when \;\gamma\; is \;low\; then\; \phi\; is\; negative \qquad (ii) \alpha= \alpha_r , then\; \phi \;is\; zero. \qquad (iii) when\; \gamma > \gamma _r , then \;\phi\;\;is\; positive \\ (i) when \;\gamma\; is \;low\;\phi\; is\; zero \qquad (ii) \alpha= \alpha_r , \phi \;is\; zero. \qquad (iii) when\; \gamma > \gamma _r , then \;\phi\;\;is\; very \;small \\ (i) when \;\gamma\; is \;low\; then\; \phi\; is\;very\;small \qquad (ii) \alpha= \alpha_r , then\; \phi \;is\; zero. \qquad (iii) when\; \gamma > \gamma _r , then \;\phi\;\;is\; \infty \end{array} $