\[ \begin{array}{l} (A)\quad y\;\mathrm{e}^{\int p_1\mathrm{d}y}=\int\bigg(Q_1\mathrm{e}^{\int p_1\mathrm{d}y}\bigg)dy+C \\ (B)\quad y\;.\mathrm{e}^{\int p_1\mathrm{d}x}=\int \bigg(Q_1\mathrm{e}^{\int p_1\mathrm{d}x}\bigg)dx+C \\ (C)\quad x\;\mathrm{e}^{\int p_1\mathrm{d}y}=\int \bigg(Q_1\mathrm{e}^{\int p_1dy}\bigg)dy+C \\ (D)\quad x\;\mathrm{e}^{\int p_1dx}=\int\bigg(Q_1\mathrm{e}^{\int p_1\mathrm{d}x}\bigg)dx+C \end{array} \]