Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

What does $\tan^{-1}{\frac{1}{4}}+\tan^{-1}{\frac{2}{9}}$ reduce to?

$\begin{array}{1 1} sin^{-1}\frac{1}{\sqrt5} \\ sin^{-1}\frac{2}{\sqrt5} \\ cos^{-1}\frac{1}{\sqrt5} \\ tan^{-1}\frac{1}{\sqrt5} \end{array} $

Can you answer this question?

1 Answer

0 votes
  • \( tan^{-1}x+tan^{-1}y=tan^{-1}\frac{x+y}{1-xy}\:\:\:xy<1\)
  • \( tan^{-1}x=sin^{-1}\frac{x}{\sqrt{1+x^2}}\)
By taking \(x=\frac{1}{4}\:and\:y=\frac{2}{9}\:we\:get\)
Substituting in the above formula we get L.H.S.=
\( tan^{-1}\frac{1}{4}+tan^{-1}\frac{2}{9}=tan^{-1}\frac{1}{2}\)
By taking \(x=\frac{1}{2},\:\frac{x}{\sqrt{1+x^2}}=\frac{\frac{1}{2}}{\sqrt{1+\frac{1}{4}}}=\frac{1}{2}.\frac{2}{\sqrt{5}}=\frac{1}{\sqrt5}\)
Substituting in the above formula of \(tan^{-1}x\) we get
\(tan^{-1}\frac{1}{2}= sin^{-1}\frac{1}{\sqrt 5}\)
answered Feb 19, 2013 by thanvigandhi_1
edited Jul 9, 2014 by balaji.thirumalai
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App