logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

What is the value of $\tan({\frac{1}{2}}\sin^{-1}{\frac{3}{4}})$?

$\begin{array}{1 1} \frac{-4+\sqrt 7}{3} \\ \frac{-4 - \pi}{3} \\ \frac{4+\sqrt 7}{3} \\ \frac{4- \sqrt 7}{3} \end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • Take \( sin^{-1}\frac{3}{4}=x\) and proceed
  • \( cosx=2cos^2\frac{x}{2}-1\)
  • \(cosx=\sqrt{1-sin^2x}\)
Let \( sin^{-1}\frac{3}{4}=x \Rightarrow sinx=\frac{3}{4}\)
\( cos x=\sqrt{1-sin^2x}=\sqrt{1-\frac{9}{16}}=\frac{\sqrt 7}{4}\)
\( \Rightarrow\:cosx= 2cos^2\frac{x}{2}-1=\frac{\sqrt 7}{4}\)
\( \Rightarrow 2cos^2\frac{x}{2}=\frac{\sqrt{7}}{4}+1=\frac{4+\sqrt 7}{4}\)
\( \Rightarrow cos\frac{x}{2}=\sqrt{\frac{4+\sqrt 7}{8}}\)
\(sin\frac{x}{2}=\sqrt{1-cos^2\frac{x}{2}}=\sqrt{1-\big(\frac{4+\sqrt7}{8}\big)}=\sqrt{\frac{4-\sqrt 7}{8}}\)
\(\Rightarrow\: tan\frac{x}{2}=\frac{sin\frac{x}{2}}{cos\frac{x}{2}}=\frac{4-\sqrt 7}{4+\sqrt 7}\)
\(=\frac{4-\sqrt 7}{3}\) (by rationalising the denominator)
\( tan\frac{x}{2}=\frac{4-\sqrt 7}{3}\)
answered Mar 2, 2013 by thanvigandhi_1
edited Jun 12, 2014 by balaji.thirumalai
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...