logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Sequence and Series
0 votes

If $a^2,b^2,c^2\;$ are in AP ,$\frac{1}{b+c},\frac{1}{a+c},\frac{1}{b+a}\;$ are in

$(a)\;AP\qquad(b)\;HP\qquad(C)\;GP\qquad(d)\;None\;of\;the\;above$

Can you answer this question?
 
 

1 Answer

0 votes
Answer : (a) AP
Explanation : $check\;if\;\frac{1}{b+c},\frac{1}{a+c},\frac{1}{b+a} \;are\;in\;AP$
$\frac{1}{a+c}-\frac{1}{b+c}=\frac{1}{a+b}-\frac{1}{c+a}$
$\frac{b-a}{(a+c)(b+c)}=\frac{c-b}{(a+b)(a+c)}$
$\frac{b-a}{b+c}=\frac{c-b}{a+b}$
$b^2-a^2=c^2-b^2\quad\;This\;is\;true\;as\;a^2,b^2\xi\;c^2 \;are\;in\;AP$
Hence order assumption that $\frac{1}{b+c},\frac{1}{a+c},\frac{1}{a+b}\;$are in AP is true.
answered Dec 31, 2013 by yamini.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...