logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Sequence and Series
0 votes

If a,b,c,d are positive real number , then least value of $\;(a+b+c+d)\;(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d})\;$ is :

$(a)\;4\qquad(b)\;8\qquad(c)\;16\qquad(d)\;2$

Can you answer this question?
 
 

1 Answer

0 votes
Answer : (c) 16
Explanation : $\;AM\;\geq\;GM$
$\large\frac{a+b+c+d}{4}\;\geq\;(abcd)^{\frac{1}{4}}$
$and\;\frac{1}{4}\;(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d})\;\geq\;(\large\frac{1}{abcd})^{\frac{1}{4}}$
Multiplying both
$\frac{1}{16}\;(a+b+c+d)\;(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d})\;\geq\;1$
Least value of
$\;(a+b+c+d)\;(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d})=\frac{1}{16}.$
answered Jan 22, 2014 by yamini.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...