logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Sequence and Series
0 votes

$\;A_{1},A_{2}\;,....\;A_{n}\;$ are fixed +ve real number such that $\;A_{1}\;.A_{2}\;..\;A_{n}=k$ , then $\;A_{1}+2A_{2}+\;...\;nA_{n}$ can not be than :

$(a)\;n!\;k\qquad(b)\;n\;(n!k)^{\frac{1}{n}}\qquad(c)\;k^{\frac{1}{n}}\qquad(d)\;None\;of\;the\;above$

Can you answer this question?
 
 

1 Answer

0 votes
Answer : (b) $\;n\;(n!\;k)^{\frac{1}{n}}$
$AM\;\geq\;GM$
$\large\frac{A_{1}+2A_{2}+\;...\;nA_{n}}{n}\;\geq\;(A_{1}.(2A_{2})....(nA_{n}))^{\frac{1}{n}}$
$\large\frac{A_{1}+2A_{2}+\;...\;nA_{n}}{n}\;\geq\;(n!\;k)^{\frac{1}{n}}\;.$
answered Jan 22, 2014 by yamini.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...