Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

A rod of radius 2mm,length 80cm density $5KKg/m^3$ and made up of material of $Y=1\times 10^{10}N/m^2$.Find the elongation due to its own weight.

$\begin{array}{1 1}(A)\;1.6\times 10^{-6}m\\(B)\;3.2\times 10^{-6}m\\(C)\;2.4\times 10^{-6}m\\(D)\;\text{Zero}\end{array} $

Can you answer this question?

1 Answer

0 votes
Considering an element of length dx at a distance $x$.Force on in it due to lower part is $s(l-x)ag$ .Let the elongation in this element be $\alpha$.
As $Y=(\large\frac{f}{a})\frac{l}{\Delta l}$
Total elongation is $\int \alpha$
$\int \alpha=\int\limits_0^l \large\frac{Sg}{Y}$$(l-x)dx$
$\Rightarrow \large\frac{Sg}{Y}$$[(lx-\large\frac{x^2}{2}]_0^l$
$\Rightarrow \large\frac{Sgl^2}{2Y}$
$\Rightarrow \large\frac{5\times 10^3\times 10\times (.8)^2}{2\times 1\times 10^{10}}$
$\Rightarrow \large\frac{5\times .64\times 10^{-6}}{2}$
$\Rightarrow 1.6\times 10^{-6}m$
Hence (A) is the correct answer.
answered May 9, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App