Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

A rod of mass M of radius r,length l made up of material of young modulus Y is rotating in horizontal plane with angular velocity $\omega$.

$\begin{array}{1 1}(A)\;\large\frac{M\omega^2l^2}{3\pi r^2}\\(B)\;\large\frac{M\omega^2l^2}{2\pi r^2}\\(C)\;\large\frac{M\omega^2r^2}{3\pi l^2}\\(D)\;\large\frac{M\omega^2r}{2\pi l}\end{array} $

Can you answer this question?

1 Answer

0 votes
Considering an element of $dx$ length.
Force on it =$\int\limits_x^l dm\omega^2Y$
$\Rightarrow \int_x^l \large\frac{M}{l}$$dy\omega^2y$
$\Rightarrow [\large\frac{M\omega^2}{l}\frac{Y^2}{2}]_x^l$
$\Rightarrow \large\frac{M\omega^2}{2l}$$(l^2-x^2)$
Let the extension in element $dx$ be $d\alpha$
As $Y=(\large\frac{f}{a})\frac{l}{\Delta l}$
$\Delta l=(\large\frac{f}{a})\frac{l}{Y}$
For element of $dx$ length
$\alpha=\int\limits_0^l \int \large\frac{M\omega^2}{2la}$$(l^2-x^2)dx$
As $a=\pi r^2$
$\;\;\;=\large\frac{M\omega^2l^2}{3\pi r^2}$
Hence (A) is the correct answer.
answered May 9, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App