Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Find the value of the following function: $tan^{-1} \frac{1}{5}+ tan^{-1} \frac{1}{7}+tan^{-1}\frac{1}{3}+tan^{-1} \frac{1}{8}$

Can you answer this question?

1 Answer

0 votes
  • \( tan^{-1}x=tan^{-1}y=tan^{-1} \bigg( \frac{x+y}{1-xy} \bigg) xy < 1\)
Given $tan^{-1} \frac{1}{5}+ tan^{-1} \frac{1}{7}+tan^{-1}\frac{1}{3}+tan^{-1} \frac{1}{8}$
We will group two of the terms in the above L.H.S. equation and solve them using known inverse trignometric identities.
\(\Rightarrow L.H.S. = \bigg( tan^{-1}\frac{1}{5}+tan^{-1}\frac{1}{7}\bigg) + \bigg( tan^{-1}\frac{1}{3}+tan^{-1}\frac{1}{8}\bigg) \)
Let's take the first term $tan^{-1}\frac{1}{5}+tan^{-1}\frac{1}{7}$
We know that \( tan^{-1}x=tan^{-1}y=tan^{-1} \bigg( \frac{x+y}{1-xy} \bigg) xy < 1\)
By taking \(x=\frac{1}{5}\:and\:y=\frac{1}{7}\) in the above formula,
$x+y = \frac{1}{5}+\frac{1}{7} = \frac{12}{35}$
$1 - xy = 1 - \frac{1}{5} \times \frac{1}{7} = \frac{34}{35}$
$\large \frac{x+y}{1-xy}$ $= \frac{12}{35}.\frac{35}{34}=\frac{12}{34} = \frac{6}{17}$
\( \Rightarrow tan^{-1}\frac{1}{5}+tan^{-1}\frac{1}{7}=tan^{-1} \frac{6}{17}\)
Let's take the second term: $ tan^{-1}\frac{1}{3}+tan^{-1}\frac{1}{8}$
Similarly by taking \(x=\frac{1}{3}\:and\:y=\frac{1}{8}\) we get:
$x+y = \frac{1}{3}+\frac{1}{8} = \frac{11}{24}$
$1-xy = 1-\frac{1}{3}\times \frac{1}{8} = \frac{23}{24}$
\(\large \frac{x+y}{1-xy}\) $ =\frac{11}{24}.\frac{24}{23}=\frac{11}{23}$
$\Rightarrow tan^{-1}\frac{1}{3}+tan^{-1}\frac{1}{8} = tan^{-1}\frac{11}{23}$
Therefore $tan^{-1} \frac{1}{5}+ tan^{-1} \frac{1}{7}+tan^{-1}\frac{1}{3}+tan^{-1} \frac{1}{8}$ now reduces to \( \Rightarrow\: tan^{-1} \frac{6}{17}+tan^{-1}\frac{11}{23}\)
Similarly by taking \(x=\frac{6}{17}\:and\:y=\frac{11}{23}\) we get:
$x+y = \frac{6}{17}+\frac{11}{23} = \frac{138+187}{391} =\frac{325}{391}$
$1-xy = 1 - \frac{6}{17} \times \frac{11}{23} = 1-\frac{66}{391} = =\frac{325}{391}$
\(\large \frac{x+y}{1-xy}= \frac{325}{391}\times \frac{391}{325}=1\)
\( \Rightarrow\) \(= tan^{-1} \frac{6}{17}+tan^{-1}\frac{11}{23} = tan^{-1}1\) \( = \large \frac{\pi}{4} \)
answered Mar 14, 2013 by balaji.thirumalai

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App