logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

Find the value of the following function: $tan^{-1} \frac{1}{5}+ tan^{-1} \frac{1}{7}+tan^{-1}\frac{1}{3}+tan^{-1} \frac{1}{8}$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • \( tan^{-1}x=tan^{-1}y=tan^{-1} \bigg( \frac{x+y}{1-xy} \bigg) xy < 1\)
Given $tan^{-1} \frac{1}{5}+ tan^{-1} \frac{1}{7}+tan^{-1}\frac{1}{3}+tan^{-1} \frac{1}{8}$
We will group two of the terms in the above L.H.S. equation and solve them using known inverse trignometric identities.
\(\Rightarrow L.H.S. = \bigg( tan^{-1}\frac{1}{5}+tan^{-1}\frac{1}{7}\bigg) + \bigg( tan^{-1}\frac{1}{3}+tan^{-1}\frac{1}{8}\bigg) \)
Let's take the first term $tan^{-1}\frac{1}{5}+tan^{-1}\frac{1}{7}$
We know that \( tan^{-1}x=tan^{-1}y=tan^{-1} \bigg( \frac{x+y}{1-xy} \bigg) xy < 1\)
By taking \(x=\frac{1}{5}\:and\:y=\frac{1}{7}\) in the above formula,
$x+y = \frac{1}{5}+\frac{1}{7} = \frac{12}{35}$
$1 - xy = 1 - \frac{1}{5} \times \frac{1}{7} = \frac{34}{35}$
$\large \frac{x+y}{1-xy}$ $= \frac{12}{35}.\frac{35}{34}=\frac{12}{34} = \frac{6}{17}$
\( \Rightarrow tan^{-1}\frac{1}{5}+tan^{-1}\frac{1}{7}=tan^{-1} \frac{6}{17}\)
Let's take the second term: $ tan^{-1}\frac{1}{3}+tan^{-1}\frac{1}{8}$
Similarly by taking \(x=\frac{1}{3}\:and\:y=\frac{1}{8}\) we get:
$x+y = \frac{1}{3}+\frac{1}{8} = \frac{11}{24}$
$1-xy = 1-\frac{1}{3}\times \frac{1}{8} = \frac{23}{24}$
\(\large \frac{x+y}{1-xy}\) $ =\frac{11}{24}.\frac{24}{23}=\frac{11}{23}$
$\Rightarrow tan^{-1}\frac{1}{3}+tan^{-1}\frac{1}{8} = tan^{-1}\frac{11}{23}$
Therefore $tan^{-1} \frac{1}{5}+ tan^{-1} \frac{1}{7}+tan^{-1}\frac{1}{3}+tan^{-1} \frac{1}{8}$ now reduces to \( \Rightarrow\: tan^{-1} \frac{6}{17}+tan^{-1}\frac{11}{23}\)
Similarly by taking \(x=\frac{6}{17}\:and\:y=\frac{11}{23}\) we get:
$x+y = \frac{6}{17}+\frac{11}{23} = \frac{138+187}{391} =\frac{325}{391}$
$1-xy = 1 - \frac{6}{17} \times \frac{11}{23} = 1-\frac{66}{391} = =\frac{325}{391}$
\(\large \frac{x+y}{1-xy}= \frac{325}{391}\times \frac{391}{325}=1\)
\( \Rightarrow\) \(= tan^{-1} \frac{6}{17}+tan^{-1}\frac{11}{23} = tan^{-1}1\) \( = \large \frac{\pi}{4} \)
answered Mar 14, 2013 by balaji.thirumalai
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...