Email
Chat with tutors
logo

Ask Questions, Get Answers

X
 
Questions  >>  CBSE XII  >>  Math  >>  Model Papers
Answer
Comment
Share
Q)

Express the following matrix as the sum of a symmetric (B) and skew symmetric matrix (C) $\begin{bmatrix} 3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2 \end{bmatrix} $

$\begin{array}{1 1} B=\begin{bmatrix} 3 & \frac{-1}{2} & \frac{5}{2} \\ \frac{3}{2} & -2 & -2 \\ \frac{-5}{2} & -2 & 2 \end{bmatrix} C = \begin{bmatrix} 1 & \frac{-5}{2} & \frac{-3}{2} \\ \frac{5}{2} & 0 & -3 \\ \frac{3}{2} & 3 & 0 \\ \end{bmatrix} \\ B=\begin{bmatrix} 3 & \frac{1}{2} & \frac{-5}{2} \\ \frac{1}{2} & -2 & -2 \\ \frac{-5}{2} & -2 & 2 \end{bmatrix} C = \begin{bmatrix} 0 & \frac{5}{2} & \frac{3}{2} \\ \frac{-5}{2} & 0 & -3 \\ \frac{3}{2} & 3 & 0 \end{bmatrix} \\ B=\begin{bmatrix} 3 & \frac{1}{2} & \frac{-5}{2} \\ \frac{1}{2} & -2 & -2 \\ \frac{-5}{2} & -2 & 2 \end{bmatrix} C = \begin{bmatrix} 0 & \frac{-5}{2} & \frac{-3}{2} \\ \frac{5}{2} & 0 & -3 \\ \frac{3}{2} & 3 & 0 \end{bmatrix}\\ B=\begin{bmatrix} 3 & \frac{1}{2} & \frac{-5}{2} \\ \frac{1}{2} & -2 & -2 \\ \frac{-5}{2} & -2 & 2 \end{bmatrix} C = \begin{bmatrix} 0 & \frac{-5}{3} & \frac{-3}{5} \\ \frac{5}{2} & 0 & -3 \\ \frac{3}{2} & 3 & 0 \end{bmatrix}\end{array} $

1 Answer

Home Ask Tuition Questions
Your payment for is successful.
Continue
...