Email
Chat with tutors
Login
Ask Questions, Get Answers
Menu
X
home
ask
tuition
questions
practice
papers
mobile
tutors
pricing
X
Recent questions tagged ch3
Questions
For the matrix $ A = \begin{bmatrix} 1 & 5 \\ 6 & 7 \end{bmatrix} $ , verify that $ (i) (A+A') $ is a symmetric matrix.
cbse
class12
bookproblem
ch3
sec3
q8
p89
easy
sec-b
q8-1
math
asked
Nov 25, 2012
by
pady_1
1
answer
Find $ \frac{1}{2}(A + A')$ and $\frac{1}{2}(A - A')$ , when $ A = \begin{bmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{bmatrix} $
cbse
class12
bookproblem
ch3
sec3
q9
p89
medium
shortanswer
sec-b
math
asked
Nov 25, 2012
by
pady_1
1
answer
Express the following matrices as the sum of a symmetric and a skew symmetric matrix: $ \quad \begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix}$
cbse
class12
bookproblem
ch3
sec3
q10
p89
medium
sec-b
q10-1
math
asked
Nov 25, 2012
by
pady_1
1
answer
If $A, B$ are symmetric matrices of the same order, then $AB - BA$ is
cbse
class12
bookproblem
ch3
sec3
q11
p90
easy
shortanswer
sec-a
math
asked
Nov 23, 2012
by
pady_1
1
answer
if $A = \begin{bmatrix} cos\alpha & -sin\alpha \\ sin\alpha & cos\alpha \end{bmatrix} $ then $ A + A' = I, $ if the value of $\alpha$ is
cbse
class12
bookproblem
ch3
sec3
q12
p90
easy
shortanswer
objective
sec-a
math
asked
Nov 23, 2012
by
pady_1
1
answer
Using elementary transformations, find the inverse of the matrix if it exists - $ \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix} $
cbse
class12
bookproblem
ch3
sec4
q17
p97
medium
long-answer
sec-c
math
asked
Nov 23, 2012
by
pady_1
1
answer
Using elementary transformations, find the inverse of the matrix if it exists - $ \begin{bmatrix} 1 & 3 & -2 \\ -3 & 0 & -5 \\ 2 & 5 & 0 \end{bmatrix} $
cbse
class12
bookproblem
ch3
sec4
q16
p97
medium
long-answer
sec-c
math
asked
Nov 23, 2012
by
pady_1
1
answer
Using elementary transformations, find the inverse of the matrix if it exists - $ \begin{bmatrix} 2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2 \end{bmatrix} $
cbse
class12
bookproblem
ch3
sec4
q15
p97
medium
long-answer
sec-c
math
asked
Nov 23, 2012
by
pady_1
1
answer
Using elementary transformations, find the inverse of the matrix if it exists - $ \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} $
cbse
class12
bookproblem
ch3
sec4
q14
p97
easy
shortanswer
sec-b
math
asked
Nov 23, 2012
by
pady_1
1
answer
Using elementary transformations, find the inverse of the matrix if it exists - $ \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix} $
cbse
class12
bookproblem
ch3
sec4
q13
p97
medium
shortanswer
sec-b
math
asked
Nov 23, 2012
by
pady_1
1
answer
Using elementary transformations, find the inverse of the matrix if it exists - $ \begin{bmatrix} 6 & -3 \\ -2 & 1 \end{bmatrix} $
cbse
class12
bookproblem
ch3
sec4
q12
p97
easy
shortanswer
sec-b
math
asked
Nov 23, 2012
by
pady_1
1
answer
Using elementary transformations, find the inverse of the matrix if it exists - $ \begin{bmatrix} 2 & -6 \\ 1 & -2 \end{bmatrix} $
cbse
class12
bookproblem
ch3
sec4
q11
p97
easy
shortanswer
sec-b
math
asked
Nov 23, 2012
by
pady_1
1
answer
Using elementary transformations, find the inverse of the matrix if it exists - $ \begin{bmatrix} 3 & -1 \\ -4 & 2 \end{bmatrix} $
cbse
class12
bookproblem
ch3
sec4
q10
p97
easy
shortanswer
sec-b
math
asked
Nov 23, 2012
by
pady_1
1
answer
Using elementary transformations, find the inverse of the matrix if it exists - $ \begin{bmatrix} 3 & 10 \\ 2 & 7 \end{bmatrix} $
cbse
class12
bookproblem
ch3
sec4
q9
p97
medium
shortanswer
sec-b
math
asked
Nov 23, 2012
by
pady_1
1
answer
Using elementary transformations, find the inverse of the matrix if it exists - $ \begin{bmatrix} 4 & 5 \\ 3 & 4 \end{bmatrix} $
cbse
class12
bookproblem
ch3
sec4
q8
p97
easy
shortanswer
sec-b
math
asked
Nov 23, 2012
by
pady_1
1
answer
Using elementary transformations, find the inverse of the matrix if it exists - $ \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix} $
cbse
class12
bookproblem
ch3
sec4
q7
p97
easy
shortanswer
sec-b
math
asked
Nov 23, 2012
by
pady_1
1
answer
Using elementary transformations, find the inverse of the matrix if it exists - $ \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix} $
cbse
class12
bookproblem
ch3
sec4
q6
p97
easy
shortanswer
sec-b
math
asked
Nov 23, 2012
by
pady_1
1
answer
Using elementary transformations, find the inverse of the matrix if it exists - $ \begin{bmatrix} 2 & 1 \\ 7 & 4 \end{bmatrix} $
cbse
class12
bookproblem
ch3
sec4
q5
p97
medium
shortanswer
sec-b
math
asked
Nov 23, 2012
by
pady_1
1
answer
Using elementary transformations, find the inverse of the matrix if it exists - $ \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} $
cbse
class12
bookproblem
ch3
sec4
q4
p97
easy
shortanswer
sec-b
math
asked
Nov 23, 2012
by
pady_1
1
answer
Using elementary transformations, find the inverse of the matrix if it exists - $ \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix} $
cbse
class12
bookproblem
ch3
sec4
q3
p97
medium
shortanswer
sec-b
math
asked
Nov 23, 2012
by
pady_1
1
answer
Using elementary transformations, find the inverse of the matrix if it exists - $ \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} $
cbse
class12
bookproblem
ch3
sec4
q2
p97
easy
shortanswer
sec-b
math
asked
Nov 23, 2012
by
pady_1
1
answer
Using elementary transformations, find the inverse of the matrix if it exists - $ \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} $
cbse
class12
bookproblem
ch3
sec4
q1
p97
easy
shortanswer
sec-b
math
asked
Nov 23, 2012
by
pady_1
1
answer
Matrices $A$ and $B$ will be inverse of each other only if
cbse
class12
bookproblem
ch3
sec4
q18
p97
easy
toolbox
concepts
sec-a
math
asked
Nov 23, 2012
by
pady_1
1
answer
Let $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} $, show that $ (aI + bA)^n = a^nI + na^{n-1}bA $, where $\;I\;$ is the identity matrix of order 2 and $n \in N$.
cbse
class12
bookproblem
ch3
misc
q1
p100
medium
shortanswer
sec-c
math
asked
Nov 23, 2012
by
pady_1
1
answer
if $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ prove that $A^n = \begin{bmatrix} 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} \end{bmatrix} , n \in N$.
cbse
class12
bookproblem
ch3
misc
q2
p100
difficult
long-answer
sec-c
math
asked
Nov 23, 2012
by
pady_1
1
answer
If $ A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$ then prove that $ A^n = \begin{bmatrix} 1+2n & -4n \\ n & 1 - 2n \end{bmatrix} $ , where $n$ is any positive integer.
cbse
class12
bookproblem
ch3
misc
q3
p100
medium
long-answer
sec-b
math
asked
Nov 23, 2012
by
pady_1
1
answer
If $A$ and $B$ are symmetric matrices, prove that $AB - BA$ is a skew symmetric matrix.
cbse
class12
bookproblem
ch3
misc
q4
p100
easy
shortanswer
sec-b
math
asked
Nov 23, 2012
by
pady_1
1
answer
Show that the matrix $B'AB$ is symmetric or skew symmetric according as A is symmetric or skew symmetric.
cbse
class12
bookproblem
ch3
misc
q5
p100
easy
shortanswer
sec-b
math
asked
Nov 23, 2012
by
pady_1
1
answer
Find the values of $x, y, z $ if the matrix $ A = \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix} $ satisfy the equation $A'A = I $
cbse
class12
bookproblem
ch3
misc
q6
p100
medium
long-answer
sec-b
math
asked
Nov 23, 2012
by
pady_1
1
answer
For what values of $x$,
$\begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ x \end{bmatrix}$ = 0 ?
cbse
class12
bookproblem
ch3
misc
q7
p100
easy
shortanswer
sec-a
math
asked
Nov 23, 2012
by
pady_1
1
answer
If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} $ show that $A^2 - 5A + 7I = 0$
cbse
class12
bookproblem
ch3
misc
q8
p100
easy
shortanswer
sec-b
math
asked
Nov 23, 2012
by
pady_1
1
answer
Find $x$, if $ \begin{bmatrix} x & -5 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ 4 \\ 1 \end{bmatrix} = 0 $
cbse
class12
bookproblem
ch3
misc
q9
p100
medium
shortanswer
sec-b
math
asked
Nov 23, 2012
by
pady_1
1
answer
A manufacturer produces three products \( x, y, z \) which he sells in two markets. Annual sales are indicated below: \[ \begin{array} { c c } \textbf{Market} & \textbf{Products} \\ I & 10,000 \quad 2,000 \quad 18,000 \\ II & 6,000 \quad 20,000 \quad 8,000 \end{array} \]
If unit sale prices of x, y and z are Rs 2.50, Rs 1.50 and Rs 1.00, respectively, find the total revenue in each market
cbse
class12
bookproblem
ch3
misc
q10
p101
easy
10-1
sec-b
math
asked
Nov 22, 2012
by
pady_1
1
answer
Find the matrix \( X \) so that \( X \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \: = \: \begin{bmatrix} -7 & -8 & -9 \\ 2 & 4 & 6 \end{bmatrix} \)
cbse
class12
bookproblem
ch3
misc
q11
p101
easy
shortanswer
sec-b
math
asked
Nov 22, 2012
by
pady_1
1
answer
If \(A\) and \(B\) are square matrices of the same order such that \(AB = BA \), then prove by induction that \(AB^n = B^nA \). Further, prove that \( (AB)^n = A^nB^n \: \) for all \( n ∈ N. \)
cbse
class12
bookproblem
ch3
misc
q12
p101
long-answer
difficult
sec-c
math
asked
Nov 22, 2012
by
pady_1
1
answer
If the matrix A is both symmetric and skew symmetric, then
cbse
class12
bookproblem
ch3
misc
q14
p101
easy
shortanswer
sec-a
math
asked
Nov 22, 2012
by
pady_1
1
answer
If $A $ is a square matrix, such that $ A^2 = A $ , then $ (1 + A )^3 - 7A $ is equal to:
cbse
class12
bookproblem
ch3
misc
q15
p101
easy
shortanswer
sec-a
math
asked
Nov 22, 2012
by
pady_1
1
answer
Page:
« prev
1
...
29
30
31
32
Home
Ask
Tuition
Questions
Practice
Your payment for
is successful.
Continue
...