Email
Chat with tutors
Login
Ask Questions, Get Answers
Menu
X
home
ask
tuition
questions
practice
papers
mobile
tutors
pricing
X
Recent questions tagged ch3
Questions
Find non-zero values of $x$ satisfying the matrix equation $x\begin{bmatrix}2x & 2\\3 & x\end{bmatrix}+2\begin{bmatrix}8 & 5x\\4 & 4x\end{bmatrix}=2\begin{bmatrix}(x^2+8) & 24\\(10) & 6x\end{bmatrix}$
cbse
class12
ch3
q8
p53
short-answer
exemplar
sec-b
easy
math
asked
Dec 22, 2012
by
sreemathi.v
1
answer
If $X=\begin{bmatrix}3 & 1 & 1\\5 & 2 & 3\end{bmatrix}$ and $Y=\begin{bmatrix}2 & 1 & 1\\7 & 2 & 4\end{bmatrix}$, find $X + Y$
cbse
class12
ch3
q7
q7-1
p53
short-answer
exemplar
sec-a
math
asked
Dec 22, 2012
by
sreemathi.v
1
answer
If possible,find the sum of the matrices A and B,where $A=\begin{bmatrix}\sqrt 3 & 1\\2 & 3\end{bmatrix},and\; B=\begin{bmatrix}x & y & z\\a & b &6\end{bmatrix}$
cbse
class12
ch3
q6
p53
short-answer
exemplar
easy
sec-a
math
asked
Dec 22, 2012
by
sreemathi.v
1
answer
Find values of a and b if A=B,where A=$\begin{bmatrix}a + 4 & 3b\\8 & - 6\end{bmatrix},B=\begin{bmatrix}2a + 2 & b^2 + 2\\8 & b^2 - 5b\end{bmatrix}$
cbse
class12
ch3
q5
p53
short-answer
exemplar
easy
sec-b
math
asked
Dec 22, 2012
by
sreemathi.v
1
answer
Construct a $3\times 2$ matrix whose elements are given by $a_{ij}=e^{i.x}\sin jx$
cbse
class12
ch3
q4
p53
short-answer
exemplar
easy
sec-a
math
asked
Dec 22, 2012
by
sreemathi.v
1
answer
Construct $a_{2\times 2}$ matrix where $a_{ij} =\frac{(i + 2j)^2}{2}$
cbse
class12
ch3
q3
q3-1
p53
short-answer
exemplar
sec-a
math
asked
Dec 22, 2012
by
sreemathi.v
1
answer
What is the order of the matrix $A=\begin{bmatrix} a & 1 & x \\ 2 & \sqrt 3 & x^2 y \\ 0 & 5 & \frac{2}{5} \end{bmatrix}$
cbse
class12
ch3
q2
q2-1
p52
short-answer
exemplar
sec-a
math
asked
Dec 21, 2012
by
sreemathi.v
1
answer
If a matrix has 28 elements, what are the possible orders it can have?
cbse
class12
ch3
q1
q1-1
p52
short-answer
exemplar
easy
sec-a
math
asked
Dec 21, 2012
by
sreemathi.v
1
answer
Find the value of x, if $\begin {bmatrix} 3x+y & -y \\ 2y-x & 3 \end{bmatrix} = \begin {bmatrix} 1 & 2 \\ -5 & 3 \end{bmatrix} $
cbse
class12
modelpaper
2009
sec-a
q1
ch3
easy
math
asked
Dec 20, 2012
by
thanvigandhi_1
1
answer
Find the value of $x$ and $y$ if : $ 2\begin{bmatrix} 1 & 3 \\[0.3em] 0 & x \\[0.3em] \end{bmatrix} + \begin{bmatrix} y & 0 \\[0.3em] 1 & 2 \\[0.3em] \end{bmatrix} = \begin{bmatrix} 5 & 6 \\[0.3em] 1 & 8 \\[0.3em] \end{bmatrix}$
cbse
class12
modelpaper
2008-1
sec-a
q3
ch3
easy
math
asked
Dec 20, 2012
by
thanvigandhi_1
1
answer
Let $ A = \begin{bmatrix} 3 & 2 & 5 \\[0.3em] 4 & 1 & 3 \\[0.3em] 0 & 6 & 7 \end{bmatrix}$ Express $A$ as sum of two matrices such that one is symmetric and the other is skew symmetric.
cbse
class12
modelpaper
2008-1
sec-b
q13
ch3
easy
math
asked
Dec 20, 2012
by
thanvigandhi_1
1
answer
Compute the indicated products\begin{array}{1 1 1}(i)\;\begin{bmatrix}a & b\\-b & a\end{bmatrix}\begin{bmatrix}a &-b\\b & a\end{bmatrix}\;(ii)\;\begin{bmatrix}1\\2\\3\end{bmatrix}\begin{bmatrix}2 & 3 & 4\end{bmatrix} & (iii)\;\begin{bmatrix}1 & -2\\2 & 3\end{bmatrix}\begin{bmatrix}1 & 2 & 3\\2 & 3 & 1\end{bmatrix}\\(iv)\;\begin{bmatrix}2 & 3 &4\\3 & 4 &4\\4 & 5 & 6\end{bmatrix}\begin{bmatrix}1 & -3 & 5\\0 & 2 &4\\3 & 0 & 5\end{bmatrix} & (v)\;\begin{bmatrix}2 & 1\\3 & 2\\-1 & 1\end{bmatrix}\begin{bmatrix}1 & 0 &1\\-1 & 2 & 1\end{bmatrix}\\(vi)\;\begin{bmatrix}3 & -1 &3\\-1 & 0 &2\end{bmatrix}\begin{bmatrix}2 & -3\\1 & 0\\3 & 1\end{bmatrix}\end{array}
cbse
class12
bookproblem
ch3
sec2
q3
p80
easy
math
asked
Dec 7, 2012
by
sreemathi.v
1
answer
In the matrix $A=\begin{bmatrix}2 & 5 & 19 & -7\\35 & -2 & \frac{5}{2} & 12\\\sqrt 3 & 1 & -5& 17\end{bmatrix},$write:\[(i)\;The\;order\;of\;the\;matrix,\qquad(ii)\;The\;number\;of\;the\;elements,\]\[(iii)\;Write\;the\;elements\;a_{13},a_{21},a_{33},a_{24},a_{23}\]
cbse
class12
bookproblem
ch3
sec1
q1
p64
easy
veryshortanswer
sec-a
math
asked
Dec 7, 2012
by
sreemathi.v
1
answer
If a matrix has 24 elements,what are the possible orders it can have? What, if it has 13 elements?
cbse
class12
bookproblem
ch3
sec1
q2
p64
easy
sec-a
math
asked
Dec 7, 2012
by
sreemathi.v
1
answer
If a matrix has 18 elements,what are the possible orders it can have?What, if it has 5 elements?
cbse
class12
bookproblem
ch3
sec1
q3
p64
easy
shortanswer
math
sec-a
asked
Dec 7, 2012
by
sreemathi.v
1
answer
Construct a 2 x 2 matrix, $A=[a_{ij}],$whose elements are given by: $\;a_{ij}=\frac{(i+2j)^2}{2}$
cbse
class12
bookproblem
ch3
sec1
q4
p64
q4-3
easy
shortanswer
math
sec-a
asked
Dec 7, 2012
by
sreemathi.v
1
answer
Construct a 3 x 4 matrix,whose elements are given by: $\;a_{ij}=2i-j$
cbse
class12
bookproblem
ch3
sec1
q5
p64
q5-2
easy
math
sec-a
asked
Dec 7, 2012
by
sreemathi.v
1
answer
Find the values of x,y and z from the following equations:\[(i)\begin{bmatrix}4 & 3\\x & 5\end{bmatrix}=\begin{bmatrix}y & z\\1 & 5\end{bmatrix}\qquad(ii)\;\begin{bmatrix}x+y & z\\5+z & xy\end{bmatrix}=\begin{bmatrix}6 & 2\\5 & 8\end{bmatrix}\qquad(iii)\;\begin{bmatrix}x+y+z\\x+z\\y+z\end{bmatrix}=\begin{bmatrix}9\\5\\7\end{bmatrix}\]
cbse
class12
bookproblem
ch3
sec1
q6
p64
easy
shortanswer
math
asked
Dec 7, 2012
by
sreemathi.v
1
answer
Find the values of a,b,c and d from the question:
$\begin{bmatrix}a-b & 2a+c\\2a-b & 3c+d\end{bmatrix}$ = $\begin{bmatrix}-1 & 5\\0 & 13\end{bmatrix}$
cbse
class12
bookproblem
ch3
sec1
q7
p64
easy
shortanswer
sec-a
math
asked
Dec 7, 2012
by
sreemathi.v
1
answer
$A=[a_{ij}]_{m \times n}$ is a square matrix if
cbse
class12
bookproblem
ch3
sec1
q8
p65
objective
math
sec-a
asked
Dec 7, 2012
by
sreemathi.v
1
answer
Which of the given values of x and y make the following pair of matrices equal:$\begin{bmatrix}3x+7 & 5\\y+1 & 2-3x\end{bmatrix},\begin{bmatrix}0 & y-2\\8 & 4\end{bmatrix} $
cbse
class12
bookproblem
ch3
sec1
q9
p65
easy
shortanswer
sec-a
math
asked
Dec 7, 2012
by
sreemathi.v
1
answer
The number of all possible matrices of order 3 x 3 with each entry 0 or 1 is:
cbse
class12
bookproblem
ch3
sec1
q10
p65
sec-a
easy
math
asked
Dec 7, 2012
by
sreemathi.v
2
answers
Let $ A\;=\begin{bmatrix}2 & 4\\3 & 2\end{bmatrix}, B\;=\begin{bmatrix}1 & 3\\-2 & 5\end{bmatrix}, C\;=\begin{bmatrix}-2 & 5\\3 & 4\end{bmatrix}$\[Find\;each\;of\;the\;following:\]\[(i)\;A+B\qquad(ii)\;(A-B)\qquad(iii)\;3A-C\]\[(iv)\;AB\qquad(v)BA\]
cbse
class12
bookproblem
ch3
sec2
q1
p80
shortanswer
easy
math
sec-b
asked
Dec 7, 2012
by
sreemathi.v
1
answer
Compute the following $\;\begin{bmatrix}a^2+b^2 & b^2+c^2\\a^2+c^2 & a^2+b^2\end{bmatrix}+\begin{bmatrix}2ab & 2bc\\-2ac & 2ab\end{bmatrix}$
cbse
class12
bookproblem
ch3
sec2
q2-2
p80
easy
shortanswer
sec-a
math
asked
Dec 6, 2012
by
sreemathi.v
1
answer
If $ A = \begin{bmatrix} 1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1 \end{bmatrix} , B = \begin{bmatrix} 3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3 \end{bmatrix} \text{ and } C = \begin{bmatrix} 4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -3 & 2 \end{bmatrix} $, then compute $( A + B )$ and $( B - C )$. Also verify that $A + ( B - C ) = ( A + B ) - C. $
cbse
class12
bookproblem
ch3
sec2
q4
p81
easy
long-answer
sec-c
math
asked
Nov 26, 2012
by
pady_1
1
answer
If $ A = \begin{bmatrix} \frac{2}{3} & 1 & \frac{5}{3} \\ \frac{1}{3} & \frac{2}{3} & \frac{4}{3} \\ \frac{7}{3} & 2 & \frac{2}{3} \end{bmatrix} \text{ and } B = \begin{bmatrix} \frac{2}{5} & \frac{3}{5} & 1 \\ \frac{1}{5} & \frac{2}{5} & \frac{4}{5} \\ \frac{7}{5} & \frac{6}{5} & \frac{2}{5} \end{bmatrix} \text{ then compute } 3A - 5B $
cbse
class12
bookproblem
ch3
sec2
q5
p81
medium
sec-b
math
asked
Nov 26, 2012
by
pady_1
1
answer
Simplify $\cos\theta\begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$ + $\sin\theta\begin{bmatrix} \sin\theta & -\cos\theta \\ \cos\theta & \sin\theta \end{bmatrix} $
cbse
class12
bookproblem
ch3
sec2
q6
p81
easy
shortanswer
sec-a
math
asked
Nov 26, 2012
by
pady_1
1
answer
Find $X$ and $Y$ if $$ \begin{array}{l \qquad l} (i) \quad X + Y = \begin{bmatrix} 7 & 0 \\ 2 & 5 \end{bmatrix} \text{ and } X - Y = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \\ (ii) \quad 2X + 3Y = \begin{bmatrix} 2 & 3 \\ 4 & 0 \end{bmatrix} \text{ and } 3X + 2Y = \begin{bmatrix} 2 & -2 \\ -1 & 5 \end{bmatrix} \end{array} $$
cbse
class12
bookproblem
ch3
sec2
q7
p81
math
sec-a
asked
Nov 26, 2012
by
pady_1
1
answer
Find $X$ , if $Y = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix} $ and $ 2X + Y = \begin{bmatrix} 1 & 0 \\ -3 & 2 \end{bmatrix} $
cbse
class12
bookproblem
ch3
sec2
q8
p81
easy
shortanswer
sec-a
math
asked
Nov 26, 2012
by
pady_1
1
answer
Find $x$ and $y$, if $ 2\begin{bmatrix} 1 & 3 \\ 0 & x \end{bmatrix} + \begin{bmatrix} y & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix} $
cbse
class12
bookproblem
ch3
sec2
q9
p81
easy
shortanswer
sec-a
math
asked
Nov 26, 2012
by
pady_1
1
answer
Solve the equation for $x, y, z$ and $t$ if $ 2\begin{bmatrix}x & z \\ y & t \end{bmatrix} + 3\begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} = 3\begin{bmatrix} 3 & 5 \\ 4 & 6 \end{bmatrix} $
cbse
class12
bookproblem
ch3
sec2
q10
p81
easy
shortanswer
sec-a
math
asked
Nov 26, 2012
by
pady_1
1
answer
If $ x\begin{bmatrix} 2 \\ 3 \end{bmatrix} + y\begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \end{bmatrix} $, find the values of $x$ and $y$.
cbse
class12
bookproblem
ch3
sec2
q11
p81
easy
veryshort-answer
sec-a
math
asked
Nov 25, 2012
by
pady_1
1
answer
Given $3\begin{bmatrix} x & y \\ z & w \end{bmatrix}$ = $\begin{bmatrix} x & 6 \\ -1 & 2w \end{bmatrix}$ + $\begin{bmatrix} 4 & x + y \\ z + w & 3 \end{bmatrix}$, find the values of $x, y, z$ and $w$.
cbse
class12
bookproblem
ch3
sec2
q12
p81
easy
shortanswer
sec-a
math
asked
Nov 25, 2012
by
pady_1
1
answer
if $ F( x ) = \begin{bmatrix} cos\;x & -sin\;x & 0 \\ sin\;x & cos\;x & 0 \\ 0 & 0 & 1 \end{bmatrix}, $ show that $ F( x )\; F( y ) = F( x + y ). $
cbse
class12
bookproblem
ch3
sec2
q13
p82
easy
long-answer
sec-c
math
asked
Nov 25, 2012
by
pady_1
1
answer
Show that $$ \begin{array}{l} (i) \qquad \begin{bmatrix} 5 & -1 \\ 6 & 7 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \: \neq \: \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & -1 \\ 6 & 7 \end{bmatrix} \\[0.5em] (ii) \qquad \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{bmatrix} \: \neq \: \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \end{array} $$
cbse
class12
bookproblem
ch3
sec2
q14
p82
sec-b
math
asked
Nov 25, 2012
by
pady_1
1
answer
Find $ A^2 -5A + 6I $ , if $ A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix} $
cbse
class12
bookproblem
ch3
sec2
q15
p82
easy
shortanswer
sec-b
math
asked
Nov 25, 2012
by
pady_1
1
answer
if $ A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} ,$ prove that $ A^3 - 6A^2 + 7A + 2I = 0 $
cbse
class12
bookproblem
ch3
sec2
q16
p82
medium
long-answer
sec-c
math
asked
Nov 25, 2012
by
pady_1
1
answer
If $ A = \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix} $ and $ I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} $ find $k$ so that $A^2 = kA - 2I$
cbse
class12
bookproblem
ch3
sec2
q17
p82
easy
shortanswer
sec-b
math
asked
Nov 25, 2012
by
pady_1
1
answer
If $ A = \begin{bmatrix} 0 & -tan \frac{\alpha}{2} \\ tan\frac{\alpha}{2} & 0 \end{bmatrix} $ and $I$ is the identity matrix of order $2$, show that $ I + A = ( I - A ) \begin{bmatrix} cos\alpha & -sin\alpha \\ sin\alpha & cos\alpha \end{bmatrix} $
cbse
class12
bookproblem
ch3
sec2
q18
p82
medium
sec-b
math
asked
Nov 25, 2012
by
pady_1
1
answer
A trust fund has Rs 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of: $$ \text{(a) Rs 1800} \qquad \qquad \text{(b) Rs 2000} $$
cbse
class12
bookproblem
ch3
sec2
q19
p82
easy
long-answer
math
sec-b
asked
Nov 25, 2012
by
pady_1
1
answer
The bookshop of a particular school has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books. Their selling prices are Rs 80, Rs 60 and Rs 40 each respectively. Find the total amount the bookshop will receive from selling all the books using matrix algebra.
cbse
class12
bookproblem
ch3
sec2
q20
p83
medium
long-answer
sec-b
math
asked
Nov 25, 2012
by
pady_1
1
answer
Assume $X, Y, Z, W$ and $P$ are matrices of order $2\times n, 3\times k, 2\times p, n\times 3$ and $p\times k$, respectively. The restriction on $n, p, k$ so that $PY + WY$ will be defined are:
cbse
class12
bookproblem
ch3
sec2
q21
p83
sec-a
math
asked
Nov 25, 2012
by
pady_1
1
answer
Assume $X, Y, Z, W$ and $P$ are matrices of order $2\times n$, $3\times k$, $2\times p$, $n\times 3$ and $p\times k$, respectively. If $n = p$ then the order of the matrix $7X - 5Z$ is:
cbse
class12
bookproblem
ch3
sec2
q22
p83
sec-a
math
asked
Nov 25, 2012
by
pady_1
1
answer
Find the transpose of each of the following matrices : $$ \text{ (i) } \begin{bmatrix} 5 \\ \tfrac{1}{2} \\ -1 \end{bmatrix} \qquad \qquad (ii) \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} \qquad \qquad (iii)\begin{bmatrix} -1 & 5 & 6 \\ \sqrt{3} & 5 & 6 \\ 2 & 3 & -1 \end{bmatrix} $$
cbse
class12
bookproblem
ch3
sec3
q1
p88
math
sec-a
asked
Nov 25, 2012
by
pady_1
1
answer
if $ A = \begin{bmatrix} -1 & 2 & 3 \\ 5 & 7 & 9 \\ -2 & 1 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} -4 & 1 & -5 \\ 1 & 2 & 0 \\ 1 & 3 & 1 \end{bmatrix} \text{, then verify that } $ $$ \text{ (i) } (A+B)' = A' + B' $$
cbse
class12
bookproblem
ch3
sec3
q2
p88
easy
sec-b
q2-1
math
asked
Nov 25, 2012
by
pady_1
1
answer
If $ A' = \begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} -1 & 2 &1 \\ 1 & 2 & 3 \end{bmatrix} \text{ , then verify that } $$ \text{ (i) } (A + B )' = A' + B' \qquad \qquad $
cbse
class12
bookproblem
ch3
sec3
q3-1
p88
easy
shortanswer
sec-b
math
asked
Nov 25, 2012
by
pady_1
1
answer
If $A' = \begin{bmatrix} -2 & 3 \\ 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 0 \\ 1 & 2 \end{bmatrix}$, then find $(A + 2B)'$
cbse
class12
bookproblem
ch3
sec3
q4
p88
easy
shortanswer
sec-a
math
asked
Nov 25, 2012
by
pady_1
1
answer
For the matrices $A$ and $B$, verify that $(AB)' = B'A'$ , where $$ \text{ (i) } A = \begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix} \text{ , } B = \begin{bmatrix} -1 & 2 & 1 \end{bmatrix} \qquad $$
cbse
class12
bookproblem
ch3
sec3
q5
p88
easy
q5-1
sec-b
math
asked
Nov 25, 2012
by
pady_1
1
answer
$ (i) A = \begin{bmatrix} cos\alpha & sin\alpha \\ -sin\alpha & cos\alpha \end{bmatrix}$ then verify that $A'A = I$
cbse
class12
bookproblem
ch3
sec3
q6
p89
easy
sec-b
q6-1
math
asked
Nov 25, 2012
by
pady_1
1
answer
$ (i)$ Show that the matrix $A = \begin{bmatrix} 1 & -1 & 5 \\ -1 & 2 & 1 \\ 5 & 1 & 3 \end{bmatrix}$ is a symmetric matrix.
cbse
class12
bookproblem
ch3
sec3
q7
p89
medium
sec-b
q7-1
math
asked
Nov 25, 2012
by
pady_1
1
answer
Page:
« prev
1
...
28
29
30
31
32
next »
Home
Ask
Tuition
Questions
Practice
Your payment for
is successful.
Continue
...