Email
Chat with tutors
Login
Ask Questions, Get Answers
Menu
X
home
ask
tuition
questions
practice
papers
mobile
tutors
pricing
X
Recent questions tagged p88
Questions
Verify $(\overrightarrow{a}\times\overrightarrow{b}) \times (\overrightarrow{c}\times\overrightarrow{d})=[\overrightarrow{a} \overrightarrow{b} \overrightarrow{d} ] \overrightarrow{c} - [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c} ] \overrightarrow{d}$, For $\overrightarrow{a}=\overrightarrow{i}+\overrightarrow{j}+\overrightarrow{k},\overrightarrow{ b}=\overrightarrow{2i}+\overrightarrow{k}, \overrightarrow{c}=\overrightarrow{2i}+\overrightarrow{j}+\overrightarrow{k}, \overrightarrow{d}=\overrightarrow{i}+\overrightarrow{j}+\overrightarrow{2k}.$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q12
mar-2009
modelpaper
asked
Apr 6, 2013
by
poojasapani_1
1
answer
Find$ (\overrightarrow{a}\times\overrightarrow{b}) . (\overrightarrow{c}\times\overrightarrow{d}) $if $\overrightarrow{a}=\overrightarrow{i}+\overrightarrow{j}+\overrightarrow{k}, \overrightarrow{b}=\overrightarrow{2i}+\overrightarrow{k}, \overrightarrow{c}=\overrightarrow{2i}+\overrightarrow{j}+\overrightarrow{k}, \overrightarrow{d}=\overrightarrow{i}+\overrightarrow{j}+\overrightarrow{2k}$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q11
asked
Apr 6, 2013
by
poojasapani_1
1
answer
Prove that $(\overrightarrow{a}\times\overrightarrow{b}) . (\overrightarrow{c}\times\overrightarrow{d}) + (\overrightarrow{b}\times\overrightarrow{c}) . (\overrightarrow{a}\times\overrightarrow{d}) + (\overrightarrow{c}\times\overrightarrow{a}) . (\overrightarrow{b}\times\overrightarrow{d})=0$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q10
asked
Apr 6, 2013
by
poojasapani_1
1
answer
For any vector $\overrightarrow{a}$ Prove that $\overrightarrow{i} \times (\overrightarrow{a}\times\overrightarrow{i})+ \overrightarrow{j} \times (\overrightarrow{a}\times\overrightarrow{j})+ \overrightarrow{k } \times(\overrightarrow{a}\times\overrightarrow{k})=\overrightarrow{2a}$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q9
mar-2009
modelpaper
asked
Apr 6, 2013
by
poojasapani_1
1
answer
Prove that $( \overrightarrow{a}\times \overrightarrow{b})\times \overrightarrow{c}= \overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{c})$ if $ \overrightarrow{a}$ and $ \overrightarrow{c}$ are collinear. (Where vector triple product is non-zero).
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q8
asked
Apr 5, 2013
by
poojasapani_1
1
answer
If $ \overrightarrow{a}= \overrightarrow{2i}+ \overrightarrow{3j}- \overrightarrow{5k}, \overrightarrow{b}= -\overrightarrow{1}+ \overrightarrow{j}+ \overrightarrow{2k}$ and $ \overrightarrow{c}= \overrightarrow{4i}- \overrightarrow{2j}+ \overrightarrow{3k}, $ Show that $( \overrightarrow{a}\times \overrightarrow{b})\times \overrightarrow{c} \neq \overrightarrow{a} \times( \overrightarrow{b}\times \overrightarrow{c})$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q7
asked
Apr 5, 2013
by
poojasapani_1
1
answer
Prove thet $ \overrightarrow{a}\times( \overrightarrow{b}\times \overrightarrow{c})+ \overrightarrow{b}\times( \overrightarrow{c}\times{a})+ \overrightarrow{c}\times( \overrightarrow{a}\times \overrightarrow{b})=0$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q6
asked
Apr 5, 2013
by
poojasapani_1
1
answer
if $\ \overrightarrow{a}= \overrightarrow{2i}+ \overrightarrow{3j}- \overrightarrow{k} , \overrightarrow{b}= -\overrightarrow{2i}+ \overrightarrow{5k}, \overrightarrow{c}= \overrightarrow{j}- \overrightarrow{3k}. $ Verify that $ \overrightarrow{a}\times ( \overrightarrow{b}\times \overrightarrow{c})= (\overrightarrow{a}. \overrightarrow{c}) \overrightarrow{b}- (\overrightarrow{a}. \overrightarrow{b})c$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q5
mar-2008
oct-2008
oct-2009
modelpaper
asked
Apr 5, 2013
by
poojasapani_1
1
answer
Show that the points$(1 ,3 ,1), (1, 1, -1),(-1,1, 1),(2 ,2,- 1) $ are lying on the same plane.(Hint : It is enough to prove any three vectors formed by these four points are coplanar).
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q4
asked
Apr 5, 2013
by
poojasapani_1
1
answer
For the matrices $A$ and $B$, verify that $(AB)' = B'A'$ , where $$ \text{ (ii) } A = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \text{ , } B = \begin{bmatrix} 1 & 5 & 7 \end{bmatrix} $$
cbse
class12
bookproblem
ch3
sec3
q5
p88
easy
q5-2
sec-b
math
asked
Mar 5, 2013
by
balaji.thirumalai
1
answer
If $ A' = \begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} -1 & 2 &1 \\ 1 & 2 & 3 \end{bmatrix}$, then verify that $ (ii) ( A - B )' = A' - B' $
cbse
class12
bookproblem
ch3
sec3
q3
p88
easy
shortanswer
q3-2
sec-b
math
asked
Mar 5, 2013
by
balaji.thirumalai
1
answer
If $A = \begin{bmatrix} -1 & 2 & 3 \\ 5 & 7 & 9 \\ -2 & 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} -4 & 1 & -5 \\ 1 & 2 & 0 \\ 1 & 3 & 1 \end{bmatrix} $then verify that $ (ii) (A-B)' = A' - B'$
cbse
class12
bookproblem
ch3
sec3
q2
p88
easy
q2-2
sec-b
math
asked
Mar 5, 2013
by
balaji.thirumalai
1
answer
(iii) Find the transpose of the matrix \begin{bmatrix} -1 & 5 & 6 \\ \sqrt{3} & 5 & 6 \\ 2 & 3 & -1 \end{bmatrix}
cbse
class12
bookproblem
ch3
sec3
q1
q1-3
p88
easy
sec-a
math
asked
Mar 1, 2013
by
sharmaaparna1
1
answer
Find the transpose of the following matrices: $ \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$
cbse
class12
bookproblem
ch3
sec3
q1
q1-2
p88
easy
sec-a
math
asked
Mar 1, 2013
by
balaji.thirumalai
1
answer
Find the transpose of each of the following matrices :$ (i) \begin{bmatrix} 5 \\ \tfrac{1}{2} \\ -1 \end{bmatrix}$
cbse
class12
bookproblem
ch3
q1-1
easy
p88
sec-a
shortanswer
math
asked
Mar 1, 2013
by
balaji.thirumalai
1
answer
Find the transpose of each of the following matrices : $$ \text{ (i) } \begin{bmatrix} 5 \\ \tfrac{1}{2} \\ -1 \end{bmatrix} \qquad \qquad (ii) \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} \qquad \qquad (iii)\begin{bmatrix} -1 & 5 & 6 \\ \sqrt{3} & 5 & 6 \\ 2 & 3 & -1 \end{bmatrix} $$
cbse
class12
bookproblem
ch3
sec3
q1
p88
math
sec-a
asked
Nov 25, 2012
by
pady_1
1
answer
if $ A = \begin{bmatrix} -1 & 2 & 3 \\ 5 & 7 & 9 \\ -2 & 1 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} -4 & 1 & -5 \\ 1 & 2 & 0 \\ 1 & 3 & 1 \end{bmatrix} \text{, then verify that } $ $$ \text{ (i) } (A+B)' = A' + B' $$
cbse
class12
bookproblem
ch3
sec3
q2
p88
easy
sec-b
q2-1
math
asked
Nov 25, 2012
by
pady_1
1
answer
If $ A' = \begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} -1 & 2 &1 \\ 1 & 2 & 3 \end{bmatrix} \text{ , then verify that } $$ \text{ (i) } (A + B )' = A' + B' \qquad \qquad $
cbse
class12
bookproblem
ch3
sec3
q3-1
p88
easy
shortanswer
sec-b
math
asked
Nov 25, 2012
by
pady_1
1
answer
If $A' = \begin{bmatrix} -2 & 3 \\ 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 0 \\ 1 & 2 \end{bmatrix}$, then find $(A + 2B)'$
cbse
class12
bookproblem
ch3
sec3
q4
p88
easy
shortanswer
sec-a
math
asked
Nov 25, 2012
by
pady_1
1
answer
For the matrices $A$ and $B$, verify that $(AB)' = B'A'$ , where $$ \text{ (i) } A = \begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix} \text{ , } B = \begin{bmatrix} -1 & 2 & 1 \end{bmatrix} \qquad $$
cbse
class12
bookproblem
ch3
sec3
q5
p88
easy
q5-1
sec-b
math
asked
Nov 25, 2012
by
pady_1
1
answer
To see more, click for the
full list of questions
or
popular tags
.
Home
Ask
Tuition
Questions
Practice
Your payment for
is successful.
Continue
...