Email
Chat with tutors
Login
Ask Questions, Get Answers
Menu
X
home
ask
tuition
questions
practice
papers
mobile
tutors
pricing
X
Recent questions tagged exercise2-5
Questions
Verify $(\overrightarrow{a}\times\overrightarrow{b}) \times (\overrightarrow{c}\times\overrightarrow{d})=[\overrightarrow{a} \overrightarrow{b} \overrightarrow{d} ] \overrightarrow{c} - [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c} ] \overrightarrow{d}$, For $\overrightarrow{a}=\overrightarrow{i}+\overrightarrow{j}+\overrightarrow{k},\overrightarrow{ b}=\overrightarrow{2i}+\overrightarrow{k}, \overrightarrow{c}=\overrightarrow{2i}+\overrightarrow{j}+\overrightarrow{k}, \overrightarrow{d}=\overrightarrow{i}+\overrightarrow{j}+\overrightarrow{2k}.$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q12
mar-2009
modelpaper
asked
Apr 6, 2013
by
poojasapani_1
1
answer
Find$ (\overrightarrow{a}\times\overrightarrow{b}) . (\overrightarrow{c}\times\overrightarrow{d}) $if $\overrightarrow{a}=\overrightarrow{i}+\overrightarrow{j}+\overrightarrow{k}, \overrightarrow{b}=\overrightarrow{2i}+\overrightarrow{k}, \overrightarrow{c}=\overrightarrow{2i}+\overrightarrow{j}+\overrightarrow{k}, \overrightarrow{d}=\overrightarrow{i}+\overrightarrow{j}+\overrightarrow{2k}$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q11
asked
Apr 6, 2013
by
poojasapani_1
1
answer
Prove that $(\overrightarrow{a}\times\overrightarrow{b}) . (\overrightarrow{c}\times\overrightarrow{d}) + (\overrightarrow{b}\times\overrightarrow{c}) . (\overrightarrow{a}\times\overrightarrow{d}) + (\overrightarrow{c}\times\overrightarrow{a}) . (\overrightarrow{b}\times\overrightarrow{d})=0$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q10
asked
Apr 6, 2013
by
poojasapani_1
1
answer
For any vector $\overrightarrow{a}$ Prove that $\overrightarrow{i} \times (\overrightarrow{a}\times\overrightarrow{i})+ \overrightarrow{j} \times (\overrightarrow{a}\times\overrightarrow{j})+ \overrightarrow{k } \times(\overrightarrow{a}\times\overrightarrow{k})=\overrightarrow{2a}$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q9
mar-2009
modelpaper
asked
Apr 6, 2013
by
poojasapani_1
1
answer
Prove that $( \overrightarrow{a}\times \overrightarrow{b})\times \overrightarrow{c}= \overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{c})$ if $ \overrightarrow{a}$ and $ \overrightarrow{c}$ are collinear. (Where vector triple product is non-zero).
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q8
asked
Apr 5, 2013
by
poojasapani_1
1
answer
If $ \overrightarrow{a}= \overrightarrow{2i}+ \overrightarrow{3j}- \overrightarrow{5k}, \overrightarrow{b}= -\overrightarrow{1}+ \overrightarrow{j}+ \overrightarrow{2k}$ and $ \overrightarrow{c}= \overrightarrow{4i}- \overrightarrow{2j}+ \overrightarrow{3k}, $ Show that $( \overrightarrow{a}\times \overrightarrow{b})\times \overrightarrow{c} \neq \overrightarrow{a} \times( \overrightarrow{b}\times \overrightarrow{c})$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q7
asked
Apr 5, 2013
by
poojasapani_1
1
answer
Prove thet $ \overrightarrow{a}\times( \overrightarrow{b}\times \overrightarrow{c})+ \overrightarrow{b}\times( \overrightarrow{c}\times{a})+ \overrightarrow{c}\times( \overrightarrow{a}\times \overrightarrow{b})=0$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q6
asked
Apr 5, 2013
by
poojasapani_1
1
answer
if $\ \overrightarrow{a}= \overrightarrow{2i}+ \overrightarrow{3j}- \overrightarrow{k} , \overrightarrow{b}= -\overrightarrow{2i}+ \overrightarrow{5k}, \overrightarrow{c}= \overrightarrow{j}- \overrightarrow{3k}. $ Verify that $ \overrightarrow{a}\times ( \overrightarrow{b}\times \overrightarrow{c})= (\overrightarrow{a}. \overrightarrow{c}) \overrightarrow{b}- (\overrightarrow{a}. \overrightarrow{b})c$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q5
mar-2008
oct-2008
oct-2009
modelpaper
asked
Apr 5, 2013
by
poojasapani_1
1
answer
Show that the points$(1 ,3 ,1), (1, 1, -1),(-1,1, 1),(2 ,2,- 1) $ are lying on the same plane.(Hint : It is enough to prove any three vectors formed by these four points are coplanar).
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q4
asked
Apr 5, 2013
by
poojasapani_1
1
answer
Prove that $\mid[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]\mid=a b c $ if and only if $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ are mutually perpendicular.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p87
q3
asked
Apr 5, 2013
by
poojasapani_1
1
answer
The volume of a parallelopiped whose edges are represented by $-\overrightarrow{12i}+\lambda\overrightarrow{k}, \overrightarrow{3j}-\overrightarrow{k}, \overrightarrow{2i}+\overrightarrow{j}-\overrightarrow{15k} $ is $546;\quad$ find the value of $\lambda$.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p87
q2
jun-2009
mar-2010
modelpaper
asked
Apr 5, 2013
by
poojasapani_1
1
answer
Show that the vectors $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ are coplanar if and only if $\overrightarrow{a}+\overrightarrow{b},\overrightarrow{b}+\overrightarrow{c},\overrightarrow{c}+\overrightarrow{a}$ are coplanar.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p87
q1
cnse
modelpaper-2014
sec-b
q11-a
asked
Apr 5, 2013
by
poojasapani_1
1
answer
To see more, click for the
full list of questions
or
popular tags
.
Home
Ask
Tuition
Questions
Practice
Your payment for
is successful.
Continue
...