Email
Chat with tutors
Login
Ask Questions, Get Answers
Menu
X
home
ask
tuition
questions
practice
papers
mobile
tutors
pricing
X
Recent questions tagged ch7
Questions
$g(t) =\int \limits_o^t \sin ^6 x .dx$ find $g(\pi+t)$
jeemain
math
class12
ch7
integral-calculus
definite-integrals-by-substitution
medium
q38
asked
Dec 14, 2013
by
meena.p
1
answer
Integrate : $ \int \limits _0^{n \pi +v} |\cos x | dx $
jeemain
math
class12
ch7
integral-calculus
integration-by-parts
medium
q37
asked
Dec 14, 2013
by
meena.p
1
answer
Integrate : $\int \limits_0^{\large\frac{\pi}{2}}$$ \log \sin ^2 x \;dx$
jeemain
math
class12
ch7
integral-calculus
integration-by-parts
easy
q36
asked
Dec 13, 2013
by
meena.p
1
answer
Integrate : $\int \limits_0^{\pi} \large\frac{x}{a^2 \cos ^2x + b^2 \sin ^2 x}$$dx$
jeemain
math
class12
ch7
integral-calculus
integration-by-parts
easy
q35
asked
Dec 13, 2013
by
meena.p
1
answer
Find $\int \limits_2^{-1} f(x) dx\;$, given $\;\int \limits_{-1}^4 f(x) dx =4$ and$\;\int \limits_2^4 [3-f(x) ] dx=7$
jeemain
math
class12
ch7
integral-calculus
integration-using-partial-fractions
medium
q34
asked
Dec 13, 2013
by
meena.p
1
answer
$f(x)= \left\{ \begin{array}{1 1} e^{\cos x}.\sin x & \quad |x| < 2 \\ 2 & \quad other \end{array}. \right. $ then find $\int \limits_{-2}^3 f(x)dx=?$
jeemain
math
class12
ch7
integral-calculus
definite-integrals-by-substitution
easy
q33
asked
Dec 13, 2013
by
meena.p
1
answer
Integrate: $\int \limits_{_z}^{z} \large\frac{2x(1+\sin x)}{1+\cos ^2 x}$$dx$
jeemain
math
class12
ch7
integral-calculus
integration-using-partial-fractions
difficult
q32
asked
Dec 13, 2013
by
meena.p
1
answer
$f(x)= \large\frac{e^x}{1+e^x}$ $\;I_1= \int \limits_{f(-a)}^{f(a)} x g[(x) (1-x)].dx;\;I_2= \int \limits_{f(-a)}^{f(a)} x g[(x) (1-x)].dx;$ then $\large\frac{I_1}{I_2}=?$
jeemain
math
class12
ch7
integral-calculus
definite-integrals-as-limit-of-sum
difficult
q31
asked
Dec 13, 2013
by
meena.p
1
answer
$I_1= \int \limits_{(-2-k)}^{k+3} x f[x (1-x)].dx; \; I_2= \int \limits_{(-2-k)}^{k+3} x f[x (1-x)].dx; \; \large\frac{I_1}{I_2}=?$
jeemain
math
class12
ch7
integral-calculus
integration-by-subsitution
medium
q30
asked
Dec 13, 2013
by
meena.p
1
answer
Integrate $I= \int \limits_{-\pi}^{\pi} \large\frac{\cos ^2 x}{1+a^x}$$dx$
jeemain
math
class12
ch7
integral-calculus
definite-integrals-as-limit-of-sum
easy
q29
asked
Dec 13, 2013
by
meena.p
1
answer
Integrate :$\int \limits_6^8 \large\frac{[x^2]}{[x^2-28 x +196]+[x^2]}$$ dx$
jeemain
math
class12
ch7
integral-calculus
integration-using-partial-fractions
easy
q28
asked
Dec 13, 2013
by
meena.p
1
answer
Integrate : $ \int \limits_3^5 \large\frac{\sqrt {\log (x)}}{\log (\theta- x)+ \log (x)}$$dx$
jeemain
math
class12
ch7
integral-calculus
integration-using-partial-fractions
easy
q27
asked
Dec 13, 2013
by
meena.p
1
answer
Solve : $f(x)=\int \limits_0^2 \large\frac{\sqrt {2-x}}{\sqrt {2-x}+\sqrt {x}}dx$
jeemain
math
class12
ch7
integral-calculus
integration-using-partial-fractions
easy
q26
asked
Dec 13, 2013
by
meena.p
1
answer
$I_1= \int \limits _0^{\pi} x \log \sin x dx;\; I_2=\int \limits_0^{\pi} \log \sin x dx . $ find $\large\frac{I_1}{I_2}$=?
jeemain
math
class12
ch7
integral-calculus
integration-by-subsitution
easy
q25
asked
Dec 13, 2013
by
meena.p
1
answer
Integrate : $\int \limits_0^{\large\frac{\pi}{4}} $$\log |1+ \tan x| dx$
jeemain
math
class12
ch7
integral-calculus
integration-using-partial-fractions
easy
q24
asked
Dec 13, 2013
by
meena.p
1
answer
Integrate : $\int \limits_0^{\infty} \large\frac{\log x}{1+x^2}$$dx$
jeemain
math
class12
ch7
integral-calculus
integration-by-subsitution
medium
q23
asked
Dec 13, 2013
by
meena.p
1
answer
Integrate : $\int \limits_0^{\large\frac{\pi}{2}} \large\frac{\cos ^3 x}{\sin ^3 x + \cos ^3 x }$$ dx$
jeemain
math
class12
ch7
integral-calculus
integration-using-partial-fractions
medium
q21
asked
Dec 13, 2013
by
meena.p
1
answer
$y= \int \limits_0^n [x]dx=\large\frac{n(n-1)}{2}$ if $n=2$ then $y=?$
jeemain
math
class12
ch7
integral-calculus
definite-integrals-as-limit-of-sum
medium
q19
asked
Dec 13, 2013
by
meena.p
1
answer
Integrate : $ \int \limits_0^{\large\frac{\pi}{2}} max ^m \{ \sin x , \cos x \} dx$
jeemain
math
class12
ch7
integral-calculus
integration-using-partial-fractions
easy
q18
asked
Dec 13, 2013
by
meena.p
1
answer
Integrate : $ \int \limits_0^{\large\frac{\pi}{2}} min ^m \{ \tan x , \cot x \} dx$
jeemain
math
class12
ch7
integral-calculus
integration-using-partial-fractions
easy
q17
asked
Dec 13, 2013
by
meena.p
1
answer
Integrate: $\int \limits _0^{3 \pi} \large\frac{|\sin x|}{\sin x}$$dx$
jeemain
math
class12
ch7
integral-calculus
integration-using-partial-fractions
easy
q16
asked
Dec 12, 2013
by
meena.p
1
answer
Integrate : $ \int \limits _{-1}^5 \large\frac{|x|}{x}$$dx$
jeemain
math
class12
ch7
integral-calculus
integrals-as-an-anti-derivative
easy
q15
asked
Dec 12, 2013
by
meena.p
1
answer
Integrate: $\int \limits_{1/e}^e | \log_e x| dx $
jeemain
math
class12
ch7
integral-calculus
integration-using-partial-fractions
easy
q14
asked
Dec 12, 2013
by
meena.p
1
answer
Integrate :$\int \limits_0^3 |2-x|\;dx$
jeemain
math
class12
ch7
integral-calculus
integration-using-partial-fractions
easy
q13
asked
Dec 12, 2013
by
meena.p
1
answer
$\int \limits_1^4 \large\frac{2 e^{\Large \sin x^2}}{x}$$=f(k)-f(1)$ then find $k$=? if $\large\frac{d}{dx}$$f(x)=\Large\frac{e^{\sin x }}{\normalsize x}$
jeemain
math
class12
ch7
integral-calculus
integration-by-subsitution
medium
q12
asked
Dec 12, 2013
by
meena.p
1
answer
Integrate : $\int \limits_0^{\large\frac{z}{2}}$$ \cos x \sin ^3 x dx$
jeemain
math
class12
ch7
integral-calculus
integration-by-subsitution
medium
q11
asked
Dec 12, 2013
by
meena.p
1
answer
Integrate: $\int \limits_0^{\frac{z}{2}} \sin ^4 x \cos ^6 x dx$
jeemain
math
class12
ch7
integral-calculus
definite-integrals-by-substitution
easy
q10
asked
Dec 12, 2013
by
meena.p
1
answer
Integrate : $\int \limits_0^{\infty} \large\frac{1}{(x^2+g^2)^7}dx$
jeemain
math
class12
ch7
integral-calculus
definite-integrals-by-substitution
medium
q9
asked
Dec 12, 2013
by
meena.p
1
answer
Integrate: $\int \limits_0^{z/4} \sin ^4 (2x)dx $
jeemain
math
class12
ch7
integral-calculus
integration-by-subsitution
easy
q8
asked
Dec 12, 2013
by
meena.p
1
answer
Integrate :$\int \limits_0^1 \large\frac{1}{\sqrt {x-(z-x)}} $$dx$
jeemain
math
class12
ch7
integral-calculus
definite-integrals-as-limit-of-sum
medium
q7
asked
Dec 12, 2013
by
meena.p
1
answer
Integrate :$\int \limits_3^4 \large\frac{1}{\sqrt {(x-3)(4-x)}} $$dx$
jeemain
math
class12
ch7
integral-calculus
definite-integrals-as-limit-of-sum
difficult
q6
asked
Dec 12, 2013
by
meena.p
1
answer
Integrate : $\int\limits_0^5 \sqrt {\large\frac{x^3}{5-x}}dx$
jeemain
math
class12
ch7
integral-calculus
definite-integrals-as-limit-of-sum
difficult
q5
asked
Dec 12, 2013
by
meena.p
1
answer
Integrate $\int \limits_0^3 \sqrt {\large\frac{x}{3-x}}$$dx$
jeemain
math
class12
ch7
integral-calculus
definite-integrals-as-limit-of-sum
difficult
q4
asked
Dec 12, 2013
by
meena.p
1
answer
Integrate $\int \limits_0^1 x(1-x)^n dx. n \in N$
jeemain
math
class12
ch7
integral-calculus
definite-integrals-as-limit-of-sum
easy
q3
asked
Dec 12, 2013
by
meena.p
1
answer
In how many ways can a mixed doubles game in tennis can be arranged from 5 couples, if no husband and wife play in the same game?
jeemain
math
class11
ch7
permutations-and-combinations
combinations
medium
mock
asked
Nov 23, 2013
by
rvidyagovindarajan_1
1
answer
$S=\{1,2,3..............12\}$ $A,B,C $ are disjoint equivalent subsets of $S$ so that $A\cup B\cup C=S$. How many such sets $A,B,C$ can be formed?
jeemain
math
class11
ch7
permutations-and-combinations
combinations
easy
asked
Sep 14, 2013
by
rvidyagovindarajan_1
1
answer
$\int \large\frac{(2\sin 2x-\cos x)}{(6-\cos 2x -4\sin x) }$$dx$
math
cbse
xii
ch7
sec-b
difficult
additionalproblem
asked
Sep 12, 2013
by
anonymous
1
answer
There are 9 Judges in a beauty contest. A particular candidate is selected as the winner if she gets maximum number of votes in favour. In how many ways a particular candidate is declared the winner?
jeemain
math
class11
ch7
permutations-and-combinations
combinations
medium
asked
Sep 6, 2013
by
rvidyagovindarajan_1
1
answer
For $n\geq 4$, $1!+2!+3!+4!+.....n!$ is always
jeemain
math
class11
ch7
permutations-and-combinations
fundamental-principle-of-counting
easy
asked
Sep 6, 2013
by
rvidyagovindarajan_1
1
answer
There are 10 men. 5 of them are to be selected for a team. In how many ways this can be done if a particular person is to be selected in the team and if A is selected then B also is to be selected?
jeemain
math
class11
ch7
permutations-and-combinations
combinations
medium
asked
Sep 6, 2013
by
rvidyagovindarajan_1
1
answer
If $^nC_3=220$, then $n=?$
jeemain
math
class11
ch7
permutations-and-combinations
combinations
easy
asked
Sep 6, 2013
by
rvidyagovindarajan_1
1
answer
If $^{a^2-a}C_2=^{a^2-a}C_4,$ then $a=?$
jeemain
math
class11
ch7
permutations-and-combinations
combinations
easy
asked
Sep 6, 2013
by
rvidyagovindarajan_1
1
answer
$^nC_r+2.^nC_{r-1}+^nC_{r-2}=?$
jeemain
math
class11
ch7
permutations-and-combinations
combinations
easy
asked
Sep 6, 2013
by
rvidyagovindarajan_1
1
answer
If $ ^{n-1}C_6+^{n-1}C_7>^nC_6$, then $n$ is ?
jeemain
math
class11
ch7
permutations-and-combinations
combinations
easy
asked
Sep 6, 2013
by
rvidyagovindarajan_1
1
answer
If $^nP_r=720^nC_r$, then r=?
jeemain
math
class11
ch7
permutations-and-combinations
permuations-and-combinations
easy
asked
Sep 6, 2013
by
rvidyagovindarajan_1
1
answer
If $^nC_{r-1}=36$, $^nC_r=84$ and $^nC_{r+1}=126$, then $r$ = ?
jeemain
math
class11
ch7
permutations-and-combinations
combinations
easy
asked
Sep 6, 2013
by
rvidyagovindarajan_1
1
answer
If $^nC_{12}=^nC_8,$ then $n = ?$
jeemain
math
class11
ch7
permutations-and-combinations
combinations
easy
asked
Sep 6, 2013
by
rvidyagovindarajan_1
1
answer
In how many ways a mixed double games can be arranged from 8 married couples if no husband and wife play in the same game?
jeemain
math
class11
ch7
permutations-and-combinations
combinations
medium
asked
Sep 5, 2013
by
rvidyagovindarajan_1
1
answer
$(100)!+1$ is divisible by?
jeemain
math
class11
ch7
permutations-and-combinations
fundamental-principle-of-counting
easy
asked
Sep 5, 2013
by
rvidyagovindarajan_1
1
answer
A bag contains 3 black 4 white and 2 red balls, all balls being different. The number of selection of at the most 6 balls so that each selection has balls of all the 3 colours is ?
jeemain
math
class11
ch7
permutations-and-combinations
combinations
medium
asked
Sep 5, 2013
by
rvidyagovindarajan_1
1
answer
Page:
« prev
1
...
12
13
14
15
16
17
18
...
27
next »
Home
Ask
Tuition
Questions
Practice
Your payment for
is successful.
Continue
...