Email
Chat with tutors
Login
Ask Questions, Get Answers
Menu
X
home
ask
tuition
questions
practice
papers
mobile
tutors
pricing
X
Recent questions tagged p132
Questions
\[ \text{For the matrix A = } \begin{bmatrix} 2&-1&1 \\ -1& 2&- 1 \\ 1 &-1& 2 \end{bmatrix} \] \[ \text{Show that } A^{3} - 6A^{2} + 9A - 4I = O. \text{ Hence, find } A^{-1}\]
cbse
class12
bookproblem
ch4
sec5
q16
p132
difficult
sec-c
math
asked
Feb 26, 2013
by
sreemathi.v
1
answer
For the matrix \( A= \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix} \), show that \( A^3-6A^2+5A+11I=0.\) Hence, find \(A^{-1}.\)
cbse
class12
modelpaper
2012
sec-c
q23
ch4
bookproblem
sec5
q15
p132
math
asked
Jan 27, 2013
by
thanvigandhi_1
0
answers
\[ \text{If A = } \begin{bmatrix} 2&1&1 \\ 1& 2 & 1 \\ 1 &1& 2 \end{bmatrix} \] \[ \text{verify that } A^{3} - 6A^{2} + 9A - 4 I = O. \text{ Hence, find } A^{-1}\]
cbse
class12
bookproblem
sec-c
q16
p132
math
asked
Dec 12, 2012
by
sreemathi.v
0
answers
If A is an invertible matrix of order 2, then det$(A^{-1})\;$ is equal to: $ (A)\; det\;(A) \quad (B)\; \frac{1}{det\;(A)} \quad (C)\; 1 \quad (D)\; 0 $
cbse
class12
bookproblem
ch4
sec5
q18
p132
easy
sec-a
math
asked
Nov 29, 2012
by
balaji.thirumalai
1
answer
Let $A$ be a nonsingular square matrix of order $3 \times 3.$ Then $| adj \;A| $ is equal to:
cbse
class12
bookproblem
ch4
sec5
q17
p132
easy
sec-a
math
asked
Nov 29, 2012
by
balaji.thirumalai
1
answer
\[ \text{For the matrix A = } \begin{bmatrix} 1&1&1 \\ 1& 2&- 3 \\ 2 &-1& 3 \end{bmatrix} \] \[ \text{Show that } A^{3} - 6A^{2} + 5A + 11I = O. \text{ Hence, find } A^{-1}\]
cbse
class12
bookproblem
ch4
sec5
q15
p132
difficult
sec-c
math
asked
Nov 29, 2012
by
balaji.thirumalai
1
answer
\[ \text{For the matrix A = } \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}, \text{ find the numbers a and b such that } A^{2} + aA + bI = O \]
cbse
class12
bookproblem
ch4
sec5
q14
p132
medium
sec-b
math
asked
Nov 29, 2012
by
balaji.thirumalai
1
answer
\[ \text{If A = } \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}, \text{show that } A^{2} -5A +7I = 0. \text{ Hence find } A^{-1}\]
cbse
class12
bookproblem
ch4
sec5
q13
p132
medium
sec-c
math
asked
Nov 29, 2012
by
balaji.thirumalai
1
answer
\[ \text{Let A = } \begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix} \text{and B = } \begin{bmatrix} 6 & 8 \\ 7 & 9 \end{bmatrix}. \text{Verify that } (AB^{-1}) = B^{-1}A^{-1}\]
cbse
class12
bookproblem
ch4
sec5
q12
p132
medium
sec-c
math
asked
Nov 29, 2012
by
balaji.thirumalai
1
answer
Find the inverse of the matrix (if it exists): \[ \begin{bmatrix} 1&0&0 \\ 0&cos\alpha&sin\alpha \\ 0&sin\alpha&-cos\alpha \\ \end{bmatrix} \]
cbse
class12
bookproblem
ch4
sec5
q11
p132
easy
sec-b
math
asked
Nov 29, 2012
by
balaji.thirumalai
1
answer
Find the inverse of the matrix (if it exists): $\begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \\ \end{bmatrix} $
cbse
class12
bookproblem
ch4
sec5
q10
p132
medium
sec-b
math
asked
Nov 29, 2012
by
balaji.thirumalai
1
answer
Find the inverse of the matrix (if it exists): $ \begin{bmatrix} 2 & 1& 3 \\ 4 &- 1 & 0 \\ -7 & 2 & 1 \\ \end{bmatrix} $
cbse
class12
bookproblem
ch4
sec5
q9
p132
medium
sec-b
math
asked
Nov 29, 2012
by
balaji.thirumalai
1
answer
Find the inverse of the matrix (if it exists): $\begin{bmatrix} 1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1 \\ \end{bmatrix}$
cbse
class12
bookproblem
ch4
sec5
q8
p132
medium
sec-b
math
asked
Nov 29, 2012
by
balaji.thirumalai
1
answer
Find the inverse of the matrix (if it exists): $ \begin{bmatrix} 1&2&3 \\ 0&2&4 \\ 0&0&5 \\ \end{bmatrix} $
cbse
class12
bookproblem
ch4
sec5
q7
p132
medium
sec-b
math
asked
Nov 29, 2012
by
balaji.thirumalai
1
answer
Find the inverse of the matrix (if it exists): $ \begin{bmatrix} -1&5 \\ -3&2 \\ \end{bmatrix} $
cbse
class12
bookproblem
ch4
sec5
q6
p132
easy
sec-a
math
asked
Nov 29, 2012
by
balaji.thirumalai
1
answer
Find the inverse of the matrix (if it exists): $ \begin{bmatrix} 2&-2 \\ 4&3 \\ \end{bmatrix} $
cbse
class12
bookproblem
ch4
sec5
q5
p132
easy
sec-a
math
asked
Nov 29, 2012
by
balaji.thirumalai
1
answer
To see more, click for the
full list of questions
or
popular tags
.
Home
Ask
Tuition
Questions
Practice
Your payment for
is successful.
Continue
...