Email
Chat with tutors
Login
Ask Questions, Get Answers
Menu
X
home
ask
tuition
questions
practice
papers
mobile
tutors
pricing
X
Recent questions tagged sec-b
Questions
Show that $A=\begin{bmatrix} xc_{r} & xc_{r+1} & xc_{r+2} \\ yc_r & yc_{r+1} & yc_{r+2} \\ zc_r & zc_{r+1} & zc_{r+2} \end{bmatrix}=\begin{bmatrix} xc_{r} & x+1c_{r+1} & x+2c_{r+2} \\ yc_r & y+1c_{r+1} & y+2c_{r+2} \\ zc_r & z+1c_{r+1} & z+2c_{r+2} \end{bmatrix}$
cbse
class12
additionalproblem
ch4
sec-b
math
asked
Apr 5, 2013
by
meena.p
1
answer
Show that the vectors $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ are coplanar if and only if $\overrightarrow{a}+\overrightarrow{b},\overrightarrow{b}+\overrightarrow{c},\overrightarrow{c}+\overrightarrow{a}$ are coplanar.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p87
q1
cnse
modelpaper-2014
sec-b
q11-a
asked
Apr 5, 2013
by
poojasapani_1
1
answer
Prove that $\begin{vmatrix} (x-2)^2 & (x-1)^2 & x^2 \\ (x-1)^2 & x^2 & (x+1)^2 \\ x^2 & (x+1)^2 & (x+2)^2 \end{vmatrix}=-8$
cbse
class12
additionalproblem
ch4
sec-b
math
asked
Apr 5, 2013
by
meena.p
1
answer
Find $A^{-1}$ if it exists by using elementary transformations where A=$\begin{bmatrix}6 & -3\\-2 & 1\end{bmatrix}$
cbse
class12
additionalproblem
ch3
sec-b
math
asked
Apr 4, 2013
by
sreemathi.v
1
answer
Evaluate $\left|\begin{array}{ccc} 1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^{n} \\ \omega^n & \omega^{2n} & 1 \end{array}\right|$
cbse
class12
additionalproblem
ch4
sec-b
q13
medium
math
asked
Apr 4, 2013
by
meena.p
1
answer
Without expanding evaluate the determinent $\begin{vmatrix} (a^x+a^{-x})^2 & (a^x-a^{-x})^2 & 1 \\ (a^y+a^{-y})^2 & (a^y-a^{-y})^2 & 1 \\ (a^z+a^{-z})^2 & (a^z-a^{-z})^2 & 1 \end{vmatrix}$ where $a>0$ ,and $x,y,z \in R$
cbse
class12
ch4
sec-b
q11
additionalproblem
difficult
math
asked
Apr 3, 2013
by
meena.p
1
answer
Examine the consistency of the following system of equation. If it is consistent than solve the same. $x-4y+7z=14\;,3x+8y-2z=13\;,7x-8y+26z=5 $
tnstate
class12
bookproblem
ch1
sec-1
exercise1-5
p45
q1
q1-4
sec-b
easy
asked
Mar 30, 2013
by
poojasapani_1
1
answer
Examine the consistency of the following system of equation. If it is consistent than solve the same. $x+y+z=7\;,x+2y+3z=18\;,y+2z=6 $
tnstate
class12
bookproblem
ch1
sec-1
exercise1-5
p45
q1
q1-3
oct-2007
mar-2010
modelpaper
sec-b
easy
asked
Mar 30, 2013
by
poojasapani_1
1
answer
Solve the following non-homogeneous system of linear equation by determinant method : $3x+y-z=2\;,2x-y+2z=6\;,2x+y-2z=-2 $
tnstate
class12
bookproblem
ch1
sec-1
exercise1-4
p35
q6
sec-b
easy
asked
Mar 29, 2013
by
poojasapani_1
1
answer
Solve the following non-homogeneous system of linear equation by determinant method : $4x+5y=9\;,8x+10y=18 $
tnstate
class12
bookproblem
ch1
sec-1
exercise1-4
p35
q3
oct-2006
oct-2009
modelpaper
sec-b
medium
asked
Mar 29, 2013
by
poojasapani_1
1
answer
Solve the following non-homogeneous system of linear equation by determinant method : $3x+2y=5\;,x+3y=4$
tnstate
class12
bookproblem
ch1
sec-1
exercise1-4
p35
q1
sec-b
easy
asked
Mar 29, 2013
by
poojasapani_1
1
answer
Find the rank of the following matrix :$\begin{bmatrix} 1 & -2 & 3 &4 \\-2 & 4 & -1 &-3 \\-1 & 2 & 7 &6 \end{bmatrix}$
tnstate
class12
bookproblem
ch1
sec-1
exercise1-3
p19
q6
mar-2006
modelpaper
sec-b
medium
asked
Mar 29, 2013
by
poojasapani_1
1
answer
Find the rank of the following matrix :$\begin{bmatrix} 1 & 2 & -1 &3 \\2 & 4 & 1 &-2 \\3 & 6 & 3 &-7 \end{bmatrix}$
tnstate
class12
bookproblem
ch1
sec-1
exercise1-3
p19
q5
oct-2008
modelpaper
sec-b
medium
asked
Mar 29, 2013
by
poojasapani_1
1
answer
Find the rank of the following matrix :$\begin{bmatrix} 0 & 1 & 2 &1 \\2 & -3 & 0 &-1 \\1 & 1 & -1 & 0 \end{bmatrix}$
tnstate
class12
bookproblem
ch1
sec-1
exercise1-3
p19
q4
sec-b
medium
asked
Mar 29, 2013
by
poojasapani_1
1
answer
Find the rank of the following matrix :$\begin{bmatrix} 3 & 1 & 2 &0 \\1 & 0 & -1 &0 \\2 & 1 & 3 &0 \end{bmatrix}$
tnstate
class12
bookproblem
ch1
sec-1
exercise1-3
p19
q3
jun-2008
sec-b
easy
asked
Mar 29, 2013
by
poojasapani_1
1
answer
Find the rank of the following matrix :$\begin{bmatrix} 6 & 12 & 6 \\1 & 2 & 1 \\4 & 8 & 4 \end{bmatrix}$
tnstate
class12
bookproblem
ch1
sec-1
exercise1-3
p19
q2
sec-b
medium
asked
Mar 29, 2013
by
poojasapani_1
1
answer
Find the rank of the following matrix :$\begin{bmatrix} 1 & 1 & -1 \\3 & -2 & 3 \\2 & -3 & 4 \end{bmatrix}$
tnstate
class12
bookproblem
ch1
sec-1
exercise1-3
p19
q1
sec-b
medium
asked
Mar 29, 2013
by
poojasapani_1
1
answer
Solve by matrix inversion method following system of linear equation $\;7x\;+\;3y\;=\;-1\;,\;2x\;+\;y\;=\;0$
tnstate
class12
bookproblem
ch1
sec-1
exercise1-2
p13
q2
sec-b
medium
asked
Mar 29, 2013
by
poojasapani_1
1
answer
Solve by matrix inversion method following system of linear equation:$\;2x\;-\;y\;=7\;,\;3x\;-2y\;=11$
tnstate
class12
bookproblem
ch1
sec-1
exercise1-2
p13
q1
jun-2007
modelpaper
sec-b
easy
asked
Mar 29, 2013
by
poojasapani_1
1
answer
If$A=\begin{bmatrix} 5 & 2 \\7 & 3 \end{bmatrix}$and$B=\begin{bmatrix} 2 & -1 \\-1 & 1 \end{bmatrix}$ verify that\((AB)^{T}=B^{T}A^{T}\)
tnstate
class12
bookproblem
ch1
sec-1
exercise1-1
p10
q5
q5-2
sec-b
easy
asked
Mar 28, 2013
by
poojasapani_1
1
answer
Find the inverse of following matrix: $\begin{bmatrix} 1 & 3 & 7 \\4 & 2 & 3 \\1 & 2 & 1 \end{bmatrix}$
tnstate
class12
bookproblem
ch1
sec1
exercise1-1
p9
q4
q4-2
sec-b
medium
asked
Mar 28, 2013
by
poojasapani_1
1
answer
Find the inverse of following matrix :$\begin{bmatrix} 1 & 0 & 3 \\2 & 1 & -1 \\1 & -1 & 1 \end{bmatrix}$
tnstate
class12
bookproblem
ch1
sec-1
exercise1-1
p9
q4
q4-1
mar-2007
modelpaper
sec-b
difficult
asked
Mar 28, 2013
by
poojasapani_1
1
answer
Find the adjoint of the matrix A =$\begin{bmatrix} 1 & 2 \\3 & -5 \end{bmatrix}$ and verify the result $ A\;(adj\; A)=(adj\;A)\;A=$|$A$|$.I$
tnstate
class12
bookproblem
ch1
sec-1
exercise1-1
p9
q2
mar-2007
mar-2009
modelpaper
sec-b
medium
asked
Mar 28, 2013
by
poojasapani_1
1
answer
Find the adjoint of the following matrics;$\begin{bmatrix} 2& 5 & 3 \\3 & 1 & 2 \\1 & 2 & 1 \end{bmatrix}$
tnstate
class12
bookproblem
ch1
sec-1
exercise1-1
p9
q1-3
sec-b
easy
asked
Mar 27, 2013
by
poojasapani_1
1
answer
Find the adjoint of the following matrices:$\begin{bmatrix} 1 & 2 & 3 \\0 & 5 & 0 \\2 & 4 & 3 \end{bmatrix}$
tnstate
class12
bookproblem
ch1
sec-1
exercise1-1
p9
q1
q-1-2
sec-b
easy
asked
Mar 27, 2013
by
poojasapani_1
1
answer
Using properties of determinants,prove the following $\begin{vmatrix}3x& -x+y & -x+z\\x-y & 3y & z-y\\x-z & y-z & 3z\end{vmatrix}=3(x+y+z)(xy+yz+zx)$
cbse
class12
modelpaper
2013
sec-b
q22
65-3
math
asked
Mar 22, 2013
by
sreemathi.v
1
answer
If $x\sin (a+y)+\sin a \cos(a+y)=0$,Prove that $\large\frac{dy}{dx}=\large\frac{\sin^2(a+y)}{\sin a}$
cbse
class12
modelpaper
2013
sec-b
q21
65-3
math
asked
Mar 22, 2013
by
sreemathi.v
1
answer
Evaluate :$\int \large \frac{dx}{x(x^3+1)}$
cbse
class12
modelpaper
2013
sec-b
q20
65-3
math
asked
Mar 22, 2013
by
sreemathi.v
1
answer
Using vectors,find the area of triangle ABC,whose vertices are $A(1,2,3),B(2,-1,4),C(4,5,-1).$
cbse
class12
modelpaper
2013
sec-b
q19
65-3
math
asked
Mar 22, 2013
by
sreemathi.v
1
answer
Using the property of determinants, evalute: $\begin{vmatrix}x& x+y & x+2y\\x+2y & x & x+y\\x+y & x+2y & x\end{vmatrix}$
cbse
class12
additionalproblem
modelpaper
sec-b
2013
ch4
math
asked
Mar 22, 2013
by
balaji.thirumalai
1
answer
What is the value of $tan\bigg(\frac{1}{2}sin^{-1}\frac{3}{4}\bigg)$
cbse
class12
additionalproblem
modelpaper
2013
sec-b
math
asked
Mar 22, 2013
by
balaji.thirumalai
1
answer
If $\overrightarrow{p}=5\hat{i}+\lambda\hat{j}-37\hat{k}$ and $\overrightarrow{q}=\hat{i}+3\hat{j}-5\hat{k}$,then find the value of $\lambda$,so that $\overrightarrow{p}+\overrightarrow{q}$ and $\overrightarrow{p}-\overrightarrow{q}$ are perpendicular vectors.
cbse
class12
modelpaper
2013
sec-b
q22
65-2
math
asked
Mar 22, 2013
by
sreemathi.v
1
answer
Evaluate :$\int\limits_0^{\pi}\large\frac{xsin x}{1+cos^2x}dx.$
cbse
class12
modelpaper
2013
sec-b
q21
65-2
math
asked
Mar 22, 2013
by
sreemathi.v
1
answer
Evaluate :$\int \large \frac{dx}{x(x^3+8)}$
cbse
class12
modelpaper
2013
sec-b
q20
65-2
math
asked
Mar 22, 2013
by
sreemathi.v
1
answer
If $x^y=e^{x-y}$,prove that $\Large \frac{dy}{dx}=\frac{log x}{(1+log x)^2}$
cbse
class12
modelpaper
2013
sec-b
q19
65-2
math
asked
Mar 22, 2013
by
sreemathi.v
1
answer
The probabilities of two students A and B coming to the school in time are $\frac{3}{7}$ and $\frac{5}{7}$ respectively.Assuming that the events,'A coming in time' and 'B coming in time' are independent ,find the probability of only one of them coming to the school in time.Write at least one advantage of coming to school in time.
cbse
class12
modelpaper
2013
sec-b
q22
65-1
q18
65-2
q16
65-3
ch13
math
asked
Mar 20, 2013
by
sreemathi.v
1
answer
Find the vector equation of the plane through the points (2,1,-1) and (-1,3,4) and perpendicular to the plane x-2y+4z=10.
cbse
class12
modelpaper
2013
sec-b
q21
q21-2
65-1
q17
q17-2
65-2
q15
q15-2
65-3
math
asked
Mar 20, 2013
by
sreemathi.v
1
answer
Show that the lines $\begin{array}{1 1}\overrightarrow{r}=3\hat{i}+2\hat{j}-4\hat{k}+\lambda(\hat{i}+2\hat{j}+2\hat{k});\\\overrightarrow{r}=5\hat{i}-2\hat{j}+\mu(3\hat{i}+2\hat{j}+6\hat{k})\end{array} $ are intersecting. Hence find their point of intersection.
cbse
class12
modelpaper
2013
sec-b
q21
q21-1
65-1
q17
q17-1
65-2
q15
q15-1
65-3
math
asked
Mar 20, 2013
by
sreemathi.v
1
answer
If $\overrightarrow{a}=\hat{i}-\hat{j}+7\hat{k}$ and $\overrightarrow{b}=5\hat{i}-\hat{j}+\lambda\hat{k}$,then find the value of $\lambda$,so that $\overrightarrow{a}+\overrightarrow{b}$ and $\overrightarrow{a}-\overrightarrow{b}$ are perpendicular vectors.
cbse
class12
modelpaper
2013
sec-b
q20
65-1
math
asked
Mar 20, 2013
by
sreemathi.v
1
answer
Evaluate :$\int\limits_0^{2{\pi}}\large\frac{1}{1+e^{sin x}}$$dx$
cbse
class12
modelpaper
2013
sec-b
q19
65-1
q14
65-3
medium
math
asked
Mar 20, 2013
by
sreemathi.v
1
answer
Evaluate :$\int \large \frac{dx}{x(x^5+3)}$
cbse
class12
modelpaper
2013
sec-b
q18
65-1
math
asked
Mar 20, 2013
by
sreemathi.v
1
answer
Evaluate:$\large \int\frac{x+2}{\sqrt{x^2+2x+3}}$dx
cbse
class12
modelpaper
2013
sec-b
q17
q17-2
65-1
q12
q12-2
65-2
q13
q13-2
65-3
math
asked
Mar 20, 2013
by
sreemathi.v
1
answer
Evaluate: $\int\large \frac{cos 2x-cos 2\alpha}{cos x-cos\alpha}$$dx$
cbse
class12
modelpaper
2013
sec-b
q17
q17-1
65-1
q12
q12-1
65-2
q13
q13-1
65-3
math
asked
Mar 20, 2013
by
sreemathi.v
1
answer
If x=$acos^3\theta$ and y=$asin^3\theta,$then find the value of $\Large \frac{d^2y}{dx^2}$ at $ \theta=\Large \frac{\pi}{6}$.
cbse
class12
modelpaper
2013
sec-b
q16
q16-2
65-1
65-2
q12
q12-2
65-3
math
asked
Mar 20, 2013
by
sreemathi.v
1
answer
Find the value of k, for which $f(x) =\left\{\begin{array}{1 1}\frac{\sqrt{1+kx}-\sqrt{1-kx}}{x}, & if\;-1\leq x<0\\\frac{2x+1}{x-1}, & if\;0\leq x<1\end{array}\right.$ is continuous at x=0.
cbse
class12
modelpaper
2013
sec-b
q16
q16-1
65-1
65-2
q12
q12-1
65-3
math
asked
Mar 20, 2013
by
sreemathi.v
1
answer
Differentiate the following with respect to $x: \sin^{-1}\bigg(\large \frac{2^{x+1}.3^x}{1+(36)^x}\bigg)$
cbse
class12
modelpaper
2013
sec-b
q15
65-1
q11
65-2
65-3
math
asked
Mar 20, 2013
by
sreemathi.v
1
answer
If $y^x=e^{y-x}$,prove that $\large \frac{dy}{dx}=\frac{(1+log y)^2}{log y}$
cbse
class12
modelpaper
2013
sec-b
q14
65-1
math
asked
Mar 20, 2013
by
sreemathi.v
1
answer
Using properties of determinants,prove the following $\begin{vmatrix}x& x+y & x+2y\\x+2y & x & x+y\\x+y & x+2y & x\end{vmatrix}=9y^2(x+y)$
cbse
class12
modelpaper
2013
sec-b
q13
65-1
65-2
math
asked
Mar 20, 2013
by
sreemathi.v
1
answer
Solve the following equation :$\cos\big(tan^{-1}x\big)=sin\bigg(cot^{-1}\frac{3}{4}\bigg)$
cbse
class12
modelpaper
2013
sec-b
q12
q12-2
65-1
q14
q14-2
65-2
q17
q17-2
65-3
math
asked
Mar 20, 2013
by
sreemathi.v
1
answer
Show that: $tan\bigg(\frac{1}{2}sin^{-1}\frac{3}{4}\bigg)=\frac{4-\sqrt 7}{3}$
cbse
class12
modelpaper
2013
sec-b
q12
q12-1
65-1
q14
q14-1
65-2
q17
q17-1
65-3
math
asked
Mar 20, 2013
by
sreemathi.v
1
answer
Page:
« prev
1
...
37
38
39
40
41
42
43
...
73
next »
Home
Ask
Tuition
Questions
Practice
Your payment for
is successful.
Continue
...