info@clay6.com
Login
Ask Questions, Get Answers
Menu
X
home
ask
homework
questions
practice
JEEMAIN Crash
15 Test Series
NEET Crash
35 Test Series
CBSE XII
Math
JEEMAIN Premium
Math
Physics
Chemistry
Practice Test Series
CBSE XI
Math
NEET Premium
Physics
Chemistry
Biology - XII
Biology - XI
Olympiad class V
Math - 5 Test Series
Olympiad class VI
Math - 5 Test Series
CBSE XII Board Exam Series
BES Math
BES Physics
BES Chemistry
BES Biology
JEEMAIN Crash
15 Test Series
NEET Crash
35 Test Series
CBSE XII
Math
JEEMAIN Premium
Math
Physics
Chemistry
Practice Test Series
CBSE XI
Math
NEET Premium
Physics
Chemistry
Biology - XII
Biology - XI
Olympiad class V
Math - 5 Test Series
Olympiad class VI
Math - 5 Test Series
CBSE XII Board Exam Series
BES Math
BES Physics
BES Chemistry
BES Biology
papers
mobile
tutors
pricing
X
Recent questions tagged 2003
Questions
Questions from:
A body travels a distance $s$ in $t$ seconds. It starts from rest and ends at rest. In the first part of the journey, it moves with constant acceleration $f$ and in the second part with constant retardation $r$. The value of $t$ is given by:
jeemain
math
past papers
2003
225
asked
2 days
ago
by
pady_1
0
answers
Two stones are projected from the top of a cliff $h$ metres high, with the same speed $u$ so as to hit the ground at the same spot. If one of the stones is projected horizontally and the other is projected at an angle $\theta$ to the horizontal, then $\tan \theta$ equals :
jeemain
math
past papers
2003
224
asked
2 days
ago
by
pady_1
0
answers
Two particles start simultaneously from the same point and move along two straight lines, one with uniform velocity $\overrightarrow{u}$ and the other from rest with uniform acceleration $\overrightarrow{f}$. Let $\alpha$ be the angle between their directions of motion. The relative velocity of the second particle w.r.t. the first is least after a time :
jeemain
math
past papers
2003
223
asked
2 days
ago
by
pady_1
0
answers
A couple is of momen $\overrightarrow{G}$ and the force forming the couple is $\overrightarrow{P}$. If $\overrightarrow{P}$ is turned through a right angle, the moment of the couple thus formed is $\overrightarrow{H}$. If instead, the forcce $\overrightarrow{P}$ is turned through an angle $\alpha$, then the moment of couple becomes :
jeemain
math
past papers
2003
222
asked
2 days
ago
by
pady_1
0
answers
Let $R_1$ and $R_2$ respectively be the maximum ranges up and down an inclined plane and $R$ be the maximum range on the horizontal plane. Then $R_1, \;R, \; R_2$ are in :
jeemain
math
past papers
2003
221
asked
2 days
ago
by
pady_1
0
answers
The resultant of forces $\overrightarrow{P}$ and $\overrightarrow{Q}$ is $\overrightarrow{R}$. If $\overrightarrow{Q}$ is doubled, then $\overrightarrow{R}$ is doubled. If the direction of $\overrightarrow{Q}$ is reversed, then $\overrightarrow{R} $ is again doubled, then $p^2 : Q^2 : R^2$ is :
jeemain
math
past papers
2003
220
asked
2 days
ago
by
pady_1
0
answers
The mean and variance of a random variable $X$ having a binomial distribution are 4 and 2 respectively, then $P(X=1)$ is :
jeemain
math
past papers
2003
219
asked
2 days
ago
by
pady_1
0
answers
Events A, B, C are mutually exclusive events such that $P(A) = \frac{3x +1}{3}, \; P(B) = \frac{1-x}{4} $ and $P(C) = \frac{1-2x}{2}$. The set of possible values of $x$ are in the interval :
jeemain
math
past papers
2003
218
asked
2 days
ago
by
pady_1
0
answers
Five horses are in a race. Mr. A selects two of the horses at random and bets on them. The probabiliy that Mr. A selected the winning horse, is :
jeemain
math
past papers
2003
217
asked
2 days
ago
by
pady_1
0
answers
In an experiment with 15 observations on $x$, the following results were available <br> $\displaystyle\sum x^2 = 2830, \; \displaystyle\sum x = 170$ <br> One observation that was 20, was found to be wrong and was replaced by the correct value 30. Then the corrected variance is :
jeemain
math
past papers
2003
216
asked
2 days
ago
by
pady_1
0
answers
The median of a set of 9 distinct observations is 20.5. If each of the largest 4 observations of the set is increased by 2, then the median of the new set :
jeemain
math
past papers
2003
215
asked
2 days
ago
by
pady_1
0
answers
A particle acted on by constant forces $4 \hat{i} + \hat{j} - 3 \hat{k}$ and $3 \hat{i} + \hat{j} - \hat{k}$ is displaced from the point $\hat{i} + 2 \hat{j} + 3 \hat{k}$ to the point $5\hat{i} + 4\hat{j} + \hat{k}$. The total work done by the forces is :
jeemain
math
past papers
2003
213
asked
2 days
ago
by
pady_1
0
answers
The vectors $\overrightarrow{AB} = 3\hat{i} + 4 \hat{k}$, and $\overrightarrow{AC} = 5 \hat{i} -2\hat{j} + 4 \hat{k}$ are the sides of a triangle $ABC$. The length of the median through $A$ is :
jeemain
math
past papers
2003
212
asked
2 days
ago
by
pady_1
0
answers
Consider points A, B, C and D with position vectors $7 \hat{i} - 4 \hat{j} + 7 \hat{k}, \; \hat{i} - 6 \hat{j} + 10 \hat{k}, \; -\hat{i} - 3 \hat{j} + 4 \hat{k}$ and $5 \hat{i} - \hat{j} + 5 \hat{k}$ respectively. Then ABCD is a :
jeemain
math
past papers
2003
211
asked
2 days
ago
by
pady_1
0
answers
If $\overrightarrow{u}, \overrightarrow{v} $ and $\overrightarrow{w}$ are three non-coplanar vectors, then $(\overrightarrow{u} + \overrightarrow{v} - \overrightarrow{w}) . [(\overrightarrow{u} - \overrightarrow{v}) \times (\overrightarrow{v} - \overrightarrow{w} ) ] $ equals :
jeemain
math
past papers
2003
210
asked
2 days
ago
by
pady_1
0
answers
$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} $ are three vectors, such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}, \; |\overrightarrow{a}| = 1, \; |\overrightarrow{b} |= 2, \; |\overrightarrow{c} | = 3$, then $\overrightarrow{a}. \overrightarrow{b} + \overrightarrow{b}.\overrightarrow{c} + \overrightarrow{c}.\overrightarrow{a}$ is equal to :
jeemain
math
past papers
2003
209
asked
2 days
ago
by
pady_1
0
answers
Two systems of rectangular axes have the same origin. If a plane cuts them at distances $a, \; b,\; c$ and $a',\;b',\;c'$ from the origin, then :
jeemain
math
past papers
2003
208
asked
2 days
ago
by
pady_1
0
answers
The shortest distance from the plane $12x +4y +3z = 327$ to the sphere $x^2 + y^2 + z^2 + 4x - 2y - 6z = 155$ is :
jeemain
math
past papers
2003
207
asked
2 days
ago
by
pady_1
0
answers
The two lines $x = ay + b, \; z = cy + d$ and $x = a' y + b', \; z = c' y + d'$ will be perpendicular, if and only if :
jeemain
math
past papers
2003
206
asked
2 days
ago
by
pady_1
0
answers
The lines $\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{-k}$ and $\frac{x-1}{k} = \frac{y-4}{2} = \frac{z-5}{1}$ are coplanar if :
jeemain
math
past papers
2003
205
asked
2 days
ago
by
pady_1
0
answers
The radius of the circle in which the sphere $x^2 + y^2 + z^2 + 2x - 2y - 4z - 19 = 0$ is cut by the plane $x + 2y + 2z + 7 = 0$ is :
jeemain
math
past papers
2003
204
asked
2 days
ago
by
pady_1
0
answers
A tetrahedron has vertices at $O(0, 0, 0),\; A(1,2,1),\; B(2,1,3)$ and $C(-1, 1, 2)$. Then the angle between the faces $OAB$ and $ABC$ will be :
jeemain
math
past papers
2003
203
asked
2 days
ago
by
pady_1
0
answers
The foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ and the hyperbola $\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}$ coincide. Then the value of $b^2$ is :
jeemain
math
past papers
2003
202
asked
2 days
ago
by
pady_1
0
answers
The normal at the point $(bt_1^2, 2bt_1)$ on a parabola meets the parabola again in the point $(bt_2^2 , 2bt_2)$ then :
jeemain
math
past papers
2003
201
asked
2 days
ago
by
pady_1
0
answers
The lines $2x - 3y = 5$ and $3x - 4y =7$ are diameters of a circle having area as $154\; sq. unit$. Then the equation of the circle is :
jeemain
math
past papers
2003
200
asked
2 days
ago
by
pady_1
0
answers
If the two circles $(x-1)^2 + (y-3)^2 = r^2$ and $x^2 + y^2 - 8x + 2y + 8 =0$ intersect in two distinct points, then :
jeemain
math
past papers
2003
199
asked
2 days
ago
by
pady_1
0
answers
A square of side $a$ lies above the $x$-axis and has one vertex at the origin. The side passing through the origin makes an angle $\alpha ( 0 < \alpha < \frac{\pi}{4})$ with the positive direction of $x$-axis. The equation of its diagonal not passing through the origin is :
jeemain
math
past papers
2003
198
asked
2 days
ago
by
pady_1
0
answers
If the pair of straight line $x^2 -2pxy - y^2 = 0$ and $x^2 - 2qxy - y^2 = 0$ be such that each pair bisects the angle between the other pair, then :
jeemain
math
past papers
2003
197
asked
2 days
ago
by
pady_1
0
answers
Locus of centroid of the triangle whose vertices are $( a \cos t, \; a \sin t), \; (b \sin t, -b \cos t)$ and $(1, 0)$ where $t$ is a parameter, is :
jeemain
math
past papers
2003
196
asked
2 days
ago
by
pady_1
0
answers
If the equation of the locus of a point equidistant from the points $(a_1, b_1)$ and $(a_2, b_2)$ is $(a_1 - a_2) x + (b_1 - b_2) y + c = 0$, then the value of $'C'$ is :
jeemain
math
past papers
2003
195
asked
2 days
ago
by
pady_1
0
answers
The solution of the differential equation $(1+y^2) + (x - e^{\tan^{-1} y} )\frac{dy}{dx} = 0 $ is :
jeemain
math
past papers
2003
194
asked
2 days
ago
by
pady_1
0
answers
The degree and order of the differential equation of the family of all parabolas whose axis is $x$-axis, are respectively :
jeemain
math
past papers
2003
193
asked
2 days
ago
by
pady_1
0
answers
Let $f(x)$ be a function satisfying $f'(x) = f(x)$ with $f(0) = 1$ and $g(x)$ be a function that satisfies $f(x) + g(x) = x^2$. Then the value of the integral $\begin{align*} \int_0^1 f(x) \; g(x) \;dx \end{align*} $ is :
jeemain
math
past papers
2003
192
asked
2 days
ago
by
pady_1
0
answers
The area of the region bounded by the curves $y = |x-1| $ and $y=3 - |x|$ is :
jeemain
math
past papers
2003
191
asked
2 days
ago
by
pady_1
0
answers
Let $\begin{align*}\frac{d}{dx} F(x) =(\frac{e^{\sin x}}{x}), \; x > 0 \end{align*}$ <br> If $\begin{align*} \int_1^4 \frac{3}{x} e^{\sin x^3} dx = F(k) - F(1) \end{align*}$, <br> then one of the possible values of $k$, is
jeemain
math
past papers
2003
190
asked
2 days
ago
by
pady_1
0
answers
$\displaystyle\lim_{n \to \infty} \frac{1 + 2^4 + 3^4 + ...+ n^4}{n^5} - \displaystyle\lim_{n \to \infty} \frac{1+2^3 + 3^3 + ....+ n^3}{n^5}$ is :
jeemain
math
past papers
2003
189
asked
2 days
ago
by
pady_1
0
answers
The value of the integral $\begin{align*}I = \int_0^1 x(1-x)^n dx \end{align*}$ is :
jeemain
math
past papers
2003
188
asked
2 days
ago
by
pady_1
0
answers
The value of $\displaystyle\lim_{x \to 0} \frac{ \int_0^{x^2} \sec^2t \; dt}{x \sin x}$ is :
jeemain
math
past papers
2003
187
asked
2 days
ago
by
pady_1
0
answers
If $f(a + b - x) = f(x) $, then $\int_a^b x f(x) dx$ is equal to :
jeemain
math
past papers
2003
186
asked
2 days
ago
by
pady_1
0
answers
If $f(y) = e^y,\; g(y) = y; \; y>0$ and $F(t) = \int^t_0 f(t-y) \;g(y) \;dy$, then :
jeemain
math
past papers
2003
185
asked
2 days
ago
by
pady_1
0
answers
If the function $f(x) = 2x^3 - 9 ax^2 + 12 a^2x + 1$, where $a>0$, attains its maximum and minimum at $p$ and $q$ respectively such that $p^2 = q$, then $a$ equals :
jeemain
math
past papers
2003
184
asked
2 days
ago
by
pady_1
0
answers
If $ f(x) = \begin{cases} xe^{-\begin{bmatrix}\frac{1}{|x|} - \frac{1}{x}\end{bmatrix}}, & \quad \text{$x$ $\neq$ 0} \text{ then $f(x)$ is :}\\ \; \; \; 0 & \quad \text{$x=0$} \end{cases}$
jeemain
math
past papers
2003
183
asked
2 days
ago
by
pady_1
0
answers
The function $f(x) = \log (x +\sqrt{x^2+1})$, is :
jeemain
math
past papers
2003
182
asked
2 days
ago
by
pady_1
0
answers
If $f^n(a),g^n(a)$ exist and are not equal for some $n$. Further is $f(a) = g(a) =k$ and $\displaystyle\lim_{x \to a} \frac{f(a)g(x) - f(a) - g(a) f(x) + g(a) }{g(x) - f(x)} = 4$, then the value of $k$ is equal to :
jeemain
math
past papers
2003
181
asked
2 days
ago
by
pady_1
0
answers
If $\displaystyle\lim_{x \to 0} \frac{\log(3+x) - \log(3-x)}{x} = k$, the value of $k$ is :
jeemain
math
past papers
2003
180
asked
2 days
ago
by
pady_1
0
answers
$\displaystyle\lim_{x \to \frac{\pi}{2}} \frac{[1- \tan(\frac{x}{2})][1 - \sin x]}{[1+\tan(\frac{x}{2})][\pi - 2x]^3}$ is :
jeemain
math
past papers
2003
179
asked
2 days
ago
by
pady_1
0
answers
Domain of definition of the function $f(x) = \frac{3}{4-x^2} + \log_{10} (x^3 - x)$, is :
jeemain
math
past papers
2003
178
asked
2 days
ago
by
pady_1
0
answers
If $f(x) = x^n$, then the value of $f(1) - \frac{f'(1)}{1!} + \frac{f''(1)}{2!} - \frac{f'''(1)}{3!} + ....+\frac{(-1)^nf^n(1)}{n!} $ is :
jeemain
math
past papers
2003
177
asked
2 days
ago
by
pady_1
0
answers
If $f : R \to R$ satisfies $f(x+y) = f(x) + f(y)$, for all $x, \; y \in R$ and $f(1) = 7$, then $\displaystyle\sum_{r=1}^{n} f(r)$ is :
jeemain
math
past papers
2003
176
asked
2 days
ago
by
pady_1
0
answers
The real number $x$ when added to its inverse gives the minimum value of the sum at $x$ equals to :
jeemain
math
past papers
2003
175
asked
2 days
ago
by
pady_1
0
answers
Page:
1
2
3
4
...
10
next »
Home
Ask
Homework
Questions
Practice
...