Email
Chat with tutors
Login
Ask Questions, Get Answers
Menu
X
home
ask
tuition
questions
practice
papers
mobile
tutors
pricing
X
Recent questions tagged adjoint-and-inverse
Questions
If a square matrix A is such that $AA^T=I=A^TA$ then $|A|$ is equal to
jeemain
math
class12
ch4
medium
determinants
adjoint-and-inverse
asked
Apr 25, 2014
by
sreemathi.v
1
answer
If $A$ is a square matrix of order $n\times n$ then adj.(adj A) is equal to
jeemain
math
class12
ch4
determinants
adjoint-and-inverse
difficult
asked
Apr 24, 2014
by
sreemathi.v
1
answer
If $A=\begin{bmatrix}1&2\\3&-5\end{bmatrix}$ then $A^{-1}$=
jeemain
math
class12
ch4
determinants
adjoint-and-inverse
medium
asked
Apr 23, 2014
by
sreemathi.v
1
answer
If $A=\begin{bmatrix}1&\tan\large\frac{\theta}{2}\\-\tan\large\frac{\theta}{2}&1\end{bmatrix}$ and $AB=I$ then $B$=
jeemain
math
class12
ch4
determinants
adjoint-and-inverse
medium
asked
Apr 23, 2014
by
sreemathi.v
1
answer
If A is singular matrix then adj.A is
jeemain
math
class12
ch4
determinants
adjoint-and-inverse
medium
asked
Apr 23, 2014
by
sreemathi.v
1
answer
From the matrix equation $AB=AC$ we can conclude $B=C$ provided.
jeemain
math
class12
ch4
determinants
adjoint-and-inverse
medium
asked
Apr 23, 2014
by
sreemathi.v
1
answer
If $F(\alpha)=\begin{bmatrix}\cos \alpha&-\sin \alpha&0\\\sin \alpha&\cos \alpha&0\\0&0&1\end{bmatrix}$ $\alpha \in R$ then $[F(\alpha)]^{-1}$ is equal to
jeemain
math
class12
ch4
determinants
adjoint-and-inverse
medium
asked
Apr 22, 2014
by
sreemathi.v
1
answer
If $A=\begin{bmatrix}\large\frac{1}{a}&a^2&bc\\\large\frac{1}{b}&b^2&ca\\\large\frac{1}{c}&c^2&ab\end{bmatrix}$ then $|A|$ is
jeemain
math
class12
ch4
determinants
adjoint-and-inverse
medium
asked
Apr 22, 2014
by
sreemathi.v
1
answer
If $A^k=0$ for some value of k.$(I-A)^P=I+A+A^2+....+A^{k-1}$ thus P is
jeemain
math
class12
ch4
determinants
q16
adjoint-and-inverse
difficult
asked
Nov 25, 2013
by
sreemathi.v
1
answer
If $A=\begin{bmatrix}3&4\\2&4\end{bmatrix},B=\begin{bmatrix}-2&-2\\0&-2\end{bmatrix}$ then $(A+B)^{-1}$ is equal to
jeemain
math
class12
ch4
determinants
q14
adjoint-and-inverse
difficult
asked
Nov 25, 2013
by
sreemathi.v
1
answer
If $A(\theta)=\begin{bmatrix}1&\tan\theta\\-\tan\theta&1\end{bmatrix}$ and $AB=I$ then $(\sec^2\theta)B$ is equal to
jeemain
math
class12
ch4
determinants
q25
adjoint-and-inverse
medium
asked
Nov 22, 2013
by
sreemathi.v
1
answer
Inverse of the matrix $\begin{bmatrix}\cos 2\theta&-\sin 2\theta\\\sin 2\theta&\cos 2\theta\end{bmatrix}$ is
jeemain
math
class12
ch4
determinants
q23
adjoint-and-inverse
medium
asked
Nov 22, 2013
by
sreemathi.v
1
answer
If $A=\begin{bmatrix}1&x\\x^2&4y\end{bmatrix}$ and $B=\begin{bmatrix}-3&1\\1&0\end{bmatrix}$ and adj$(A+B)=\begin{bmatrix}1 &0\\0&1\end{bmatrix}$ then values of $x$ and $y$ are
jeemain
math
class12
ch4
determinants
q20
adjoint-and-inverse
medium
asked
Nov 22, 2013
by
sreemathi.v
1
answer
$A=\begin{bmatrix}1&0&0\\0&1&1\\0&-2&4\end{bmatrix}$ and $I=\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}$ and $A^{-1}=[\large\frac{1}{6}$$(A^2+cA+dI)]$ then the value of $c$ and $d$ are
jeemain
math
class12
ch3
determinants
q5
adjoint-and-inverse
medium
asked
Nov 22, 2013
by
sreemathi.v
1
answer
Inverse of $\begin{bmatrix}1&2&3\\2&3&4\\3&4&6\end{bmatrix}$ is
jeemain
math
class12
ch4
matrices-and-determinants
q50
adjoint-and-inverse
easy
asked
Nov 21, 2013
by
sreemathi.v
1
answer
If $B$ is a non-singular matrix and A is a square matrix then $det(B^{-1}AB)$ is equal to
jeemain
math
class12
ch4
determinants
q49
adjoint-and-inverse
easy
asked
Nov 21, 2013
by
sreemathi.v
1
answer
If $A^2-A+I=0$ then the inverse of A is
jeemain
math
class12
ch4
determinants
q42
adjoint-and-inverse
easy
asked
Nov 21, 2013
by
sreemathi.v
1
answer
Let $A=\begin{bmatrix}1 &-1&1\\2&1&-3\\1&1&1\end{bmatrix}$ and $10B=\begin{bmatrix}4 &2&2\\-5&0&\alpha\\1&-2&3\end{bmatrix}$ if $B$ is the inverse of matrix A then $\alpha$ is
jeemain
math
class12
ch4
determinants
q41
adjoint-and-inverse
easy
asked
Nov 21, 2013
by
sreemathi.v
1
answer
Let $A=\begin{bmatrix}0 &0&-1\\0&-1&0\\-1&0&0\end{bmatrix}$.The only correct statement about the matrix A is
jeemain
math
class12
ch4
determinants
q40
adjoint-and-inverse
easy
asked
Nov 21, 2013
by
sreemathi.v
1
answer
If the adjoint of a $3\times 3$ matrix P is $\begin{bmatrix}1 &4&4\\2&1&7\\1&1&3\end{bmatrix}$ then the possible value(s) of the determinant of P is
jeemain
math
class12
ch4
determinants
q34
adjoint-and-inverse
easy
asked
Nov 21, 2013
by
sreemathi.v
1
answer
To see more, click for the
full list of questions
or
popular tags
.
Home
Ask
Tuition
Questions
Practice
Your payment for
is successful.
Continue
...