Email
Chat with tutors
Login
Ask Questions, Get Answers
Menu
X
home
ask
tuition
questions
practice
papers
mobile
tutors
pricing
X
Recent questions tagged matrices-and-determinants
Questions
The value of $\theta$ in the first quadrant satisfying the equation $\begin{vmatrix}1+\cos^2\theta&\sin^2\theta&4\sin 4\theta\\\cos^2\theta&1+\sin^2\theta&4\sin4\theta\\\cos^2\theta&\sin^2\theta&1+4\sin 4\theta\end{vmatrix}=0$ is
jeemain
math
class12
ch3
matrices-and-determinants
equality-of-matrices
medium
asked
Apr 23, 2014
by
sreemathi.v
1
answer
If $\alpha, \beta \neq 0$, and $f(n) = \alpha^n+\beta^n$ and $\begin{vmatrix} 3 & 1+f(1) & 1+f(2)\\ 1+f(1)& 1+f(2) &1+f(3) \\ 1+f(2)&1+f(3) & 1+f(4) \end{vmatrix}$$=K(1-\alpha)^2\;(1-\beta)^2\;(\alpha-\beta)^2$, then $K$ is equal to
jeemain
math
matrices-and-determinants
jeemain-2014
q43
asked
Apr 6, 2014
by
balaji.thirumalai
0
answers
If $A$ is an $3\times 3$ non-singular matrix such that $A A' = A' A$ and $B = A^{-1} A'$, then $B B'$ equals
jeemain
math
matrices-and-determinants
jeemain-2014
q39
asked
Apr 6, 2014
by
balaji.thirumalai
0
answers
Given $A=\begin{bmatrix} 3 & -3 & 4 \\2 & -3 & 4 \\0 & -1 & 1 \end{bmatrix}$ How can we express $A^{-1}$ in terms of A?
cbse
class12
additionalproblem
sec-a
matrices-and-determinants
jeemain
ch3
math
difficult
asked
Jan 29, 2014
by
balaji
1
answer
If $A=\begin{bmatrix}2 & sec^{-1}x\\-1 & cosec^{-1} x \end{bmatrix}$ is a singular matrix then find the value of $x$
cbse
class12
matrices
additionalproblem
medium
sec-a
ch3
math
jeemain
matrices-and-determinants
asked
Jan 28, 2014
by
rvidyagovindarajan_1
1
answer
Inverse of $\begin{bmatrix}1&2&3\\2&3&4\\3&4&6\end{bmatrix}$ is
jeemain
math
class12
ch4
matrices-and-determinants
q50
adjoint-and-inverse
easy
asked
Nov 21, 2013
by
sreemathi.v
1
answer
If A=$\begin{bmatrix}3 & 2\\1 & 1\end{bmatrix}$ find the values of a and b, such that $A^2+aA+bI=0.$
cbse
class12
math
additionalproblem
ch3
sec-a
jeemain
matrices-and-determinants
matrices
easy
asked
Apr 4, 2013
by
sreemathi.v
1
answer
If $\;A=\small\frac{1}{\pi}$$\begin{bmatrix}sin^{-1}(\pi x) &tan^{-1}\big(\frac{\pi}{x}\big)\\ sin^{-1}\big(\frac{\pi}{x} \big)&cot^{-1}(\pi x)\end{bmatrix}\;$ and $\;B=\small\frac{1}{\pi} $$\begin{bmatrix}-cos^{-1}(\pi x) &tan^{-1}\big(\frac{x}{\pi}\big)\\ sin^{-1}\big(\frac{x}{\pi} \big)&-tan^{-1}(\pi x)\end{bmatrix}$ then $A-B$ is equal to
cbse
class12
ch3
q56
p60
objective
exemplar
easy
sec-a
math
jeemain
matrices-and-determinants
matrices
asked
Mar 10, 2013
by
sreemathi.v
1
answer
To see more, click for the
full list of questions
or
popular tags
.
Home
Ask
Tuition
Questions
Practice
Your payment for
is successful.
Continue
...