Email
Chat with tutors
Login
Ask Questions, Get Answers
Menu
X
home
ask
tuition
questions
practice
papers
mobile
tutors
pricing
X
Recent questions tagged ch4
Questions
Prove, using properties of determinants: $ \begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)^3 $
cbse
class12
modelpaper
2012
sec-b
q19
ch4
bookproblem
sec2
q11-1
p120
math
asked
Feb 6, 2013
by
thanvigandhi_1
0
answers
Using properties of determinants, solve the following for x : $\begin{vmatrix} x+a & x & x \\ x & x+a & x \\ x & x & x+a \end{vmatrix} = 0 $
cbse
class12
modelpaper
2012
sec-b
q12
ch4
bookproblem
misc
q5
p141
math
asked
Feb 5, 2013
by
thanvigandhi_1
1
answer
Using properties of determinants, solve the following for x : $ \begin{vmatrix} a+x & a-x & a-x \\ a-x & a+x & a-x \\ a-x & a-x & a+x \end{vmatrix} = 0 $
cbse
class12
modelpaper
2012
sec-c
q20
ch4
easy
math
asked
Feb 5, 2013
by
thanvigandhi_1
1
answer
Using properties of determinants, prove that $\begin{vmatrix} -a^2 & ab & ac \\ ba & -b^2 & bc \\ ca & cb & -c^2 \end{vmatrix} = 4a^2b^2c^2 $
cbse
class12
modelpaper
2012
sec-b
q13
ch4
bookproblem
sec2
q7
p120
medium
math
asked
Feb 4, 2013
by
thanvigandhi_1
0
answers
For the matrix \( A= \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix} \), show that \( A^3-6A^2+5A+11I=0.\) Hence, find \(A^{-1}.\)
cbse
class12
modelpaper
2012
sec-c
q23
ch4
bookproblem
sec5
q15
p132
math
asked
Jan 27, 2013
by
thanvigandhi_1
0
answers
Prove that \( \begin{bmatrix} x+4 & 2x & 2x \\ 2x & x+4 & 2x \\ 2x & 2x & x+4 \end{bmatrix} = (5x+4)(4-x)^2. \)
cbse
class12
modelpaper
2012
sec-b
q13
ch4
bookproblem
sec2
q10-1
p120
medium
math
asked
Jan 9, 2013
by
thanvigandhi_1
0
answers
Using properties of determinants, prove the following : $\begin{bmatrix} 1+a^2-b^2 & 2ab & -2b \\ 2ab & 1-a^2+b^2 & 2a \\ 2b & -2a & 1-a^2=b^2 \end{bmatrix} = (1 + a^2 + b^2)^3. $
cbse
class12
modelpaper
2012
sec-b
q12
ch4
bookproblem
sec2
q13
p121
math
asked
Jan 4, 2013
by
thanvigandhi_1
0
answers
Using properties of determinants, prove the following : $ \begin{bmatrix} 3a & -a+b & -a+c \\ a-b & 3b & c-b \\ a-c & b-c & 3c \end{bmatrix} = 3(a + b + c)(ab+bc+ca) $
cbse
class12
modelpaper
2012
sec-b
q12
ch4
bookproblem
misc
q13
p142
medium
math
asked
Jan 4, 2013
by
thanvigandhi_1
0
answers
Using properties of determinants, show that $\begin{bmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{bmatrix} = (a + b + c )^3 $
cbse
class12
modelpaper
2012
sec-b
q13
ch4
bookproblem
sec2
q11-1
p120
math
asked
Jan 2, 2013
by
thanvigandhi_1
0
answers
If \( A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end {bmatrix} \), find \( A^{-1} \) . Using \( A^{-1} \) , solve the system of equations : $ 2x – 3y + 5z = 11 ,3x + 2y – 4z = –5 ,x + y – 2x = –3. $
cbse
class12
modelpaper
2009
sec-c
q32
ch4
bookproblem
sec6
q15
p137
math
asked
Dec 29, 2012
by
thanvigandhi_1
0
answers
True or False: The maximum value of $\begin{vmatrix}1 & 1 & 1\\1 &(1-\sin x) & 1\\1 & 1 & 1-cos x\end{vmatrix}\;is\;\Large \frac{1}{2}$.
cbse
class12
ch4
sec-a
q58
p85
true-or-false
exemplar
medium
math
asked
Dec 28, 2012
by
sreemathi.v
1
answer
True or False: Let $\begin{vmatrix}a & p & x\\b & q & y\\c & r & z\end{vmatrix}$ = 16, then $\Delta_1=\begin{vmatrix}p+x & a+x & a+p\\q+y & b+y & b+q\\r+z & c+z & c+r\end{vmatrix}$ = 32
cbse
class12
ch4
sec-a
q57
p85
true-or-false
exemplar
medium
math
asked
Dec 28, 2012
by
sreemathi.v
1
answer
True or False: If the determinant $\small\begin{vmatrix}x+a & p+u & l+ f\\y+b & q+v & m +g\\z+c & r+w & n + h\end{vmatrix}$ splits into exactly $k$ determinants of order $3$, each element of which contains online term,then the value of $k$ is $8$.
cbse
class12
ch4
q56
p84
true-or-false
exemplar
sec-a
math
asked
Dec 28, 2012
by
sreemathi.v
1
answer
True or False: The determinant $ \begin{vmatrix}\sin A & \cos A & \sin A+\cos B\\\sin B & \cos A & \sin B+\cos B\\\sin C & \cos A & \sin C+\cos B\end{vmatrix}$ is equal to zero
cbse
class12
ch4
sec-a
q55
p84
true-or-false
exemplar
medium
math
asked
Dec 28, 2012
by
sreemathi.v
1
answer
True or False: $\mid adj A\mid={\mid A\mid}^2$,where A is a square matrix of order two.
cbse
class12
ch4
sec-a
q54
p84
true-or-false
exemplar
easy
math
asked
Dec 28, 2012
by
sreemathi.v
1
answer
True or False: $\begin{vmatrix}x+1 & x+2 & x+a\\x+2 & x+3 & x+b\\x+3 & x+4 & x+c\end{vmatrix}=0,$where a,b,c are in A.P.
cbse
class12
ch4
sec-a
q53
p84
true-or-false
exemplar
easy
math
asked
Dec 28, 2012
by
sreemathi.v
1
answer
True or False: If the value of a third order determinant is 12,then the value of the determinant formed by replacing each element by its co-factor will be 144.
cbse
class12
ch4
sec-a
q52
p84
true-or-false
exemplar
easy
math
asked
Dec 28, 2012
by
sreemathi.v
1
answer
True or False: If A and B are matrices of order 3 and $\mid A\mid=5,\mid B \mid=3,then\mid 3AB\mid=27\times 5\times 3=405$
cbse
class12
ch4
sec-a
q51
p84
true-or-false
exemplar
easy
math
asked
Dec 28, 2012
by
sreemathi.v
1
answer
True or False: $|\;A^{-1}\;|\neq |\;A\;|^{-1}$,where A is non-singular matrix.
cbse
class12
ch4
sec-a
q50
p84
true-or-false
exemplar
easy
math
asked
Dec 28, 2012
by
sreemathi.v
1
answer
True or False: $(aA)^{-1}= \Large{ \frac{1}{a}}\normalsize A^{-1}$, where $a$ is a any real number and $A$ is a square matrix.
cbse
class12
ch4
sec-a
q49
p84
true-or-false
exemplar
medium
math
asked
Dec 28, 2012
by
sreemathi.v
1
answer
True or False: $(A^3)^{-1}=(A^{-1})^3$,where A is a square matrix and $|\;A\;|\neq 0$
cbse
class12
ch4
sec-a
q48
p84
true-or-false
exemplar
easy
math
asked
Dec 28, 2012
by
sreemathi.v
1
answer
If $f(x)$ = $\small\begin{vmatrix}(1+x)^{17} & (1+x)^{19} & (1+x)^{23}\\(1+x)^{23} & (1+x)^{29} & (1+x)^{34}\\(1+x)^{41} & (1+x)^{43} & (1+x)^{47}\end{vmatrix}$ = $A+Bx+Cx^2+.....$, then $A$ =
cbse
class12
ch4
sec-a
q47
p84
fitb
exemplar
medium
math
asked
Dec 28, 2012
by
sreemathi.v
1
answer
$\begin{vmatrix}0 & xyz & x-z\\y-x & 0 & y-z\\z-x & z-y & 0\end{vmatrix}$ =
cbse
class12
ch4
sec-a
q46
p83
fitb
exemplar
medium
math
asked
Dec 28, 2012
by
sreemathi.v
1
answer
if $x=-9$ is a root of $\begin{vmatrix}x & 3 & 7\\2 & x & 2\\7 & 6 & x\end{vmatrix}=0$, then other roots are
cbse
class12
ch4
sec-a
q45
p83
fitb
exemplar
difficult
math
asked
Dec 28, 2012
by
sreemathi.v
1
answer
The sum of the products of elements of any row with the co-factors of corresponding elements is equal to ________________.
cbse
class12
ch4
sec-a
q44
p83
fitb
exemplar
easy
math
asked
Dec 28, 2012
by
sreemathi.v
1
answer
If A is a matrix of order $3\times 3$,then number of minors in determinant of A are____________.
cbse
class12
ch4
sec-a
q43
p83
fitb
exemplar
easy
math
asked
Dec 28, 2012
by
sreemathi.v
1
answer
If A is a matrix of order $3\times 3$,then $(A^2)^{-1}$=_____________.
cbse
class12
ch4
sec-a
q42
p83
fitb
exemplar
easy
math
asked
Dec 28, 2012
by
sreemathi.v
1
answer
If $\cos 2\theta=0$, then ${\begin{vmatrix}0 & \cos\theta & \sin\theta\\\cos\theta & \sin\theta & 0\\\sin\theta & 0 & \cos\theta\end{vmatrix}}^2$ =
cbse
class12
ch4
sec-a
q41
p83
fitb
exemplar
medium
math
asked
Dec 28, 2012
by
sreemathi.v
1
answer
If $x,y, z\in R,$ then the value of determinant $\small\begin{vmatrix}(2^x + 2^{-x})^2 & (2^x - 2^{-x})^2 & 1\\ (3^x + 3^{-x})^2 & (3^x - 3^{-x})^2 & 1\\(4^x + 4^{-x})^2 & (4^x - 4^{-x})^2 & 1\end{vmatrix}$ is
cbse
class12
ch4
sec-a
q40
p83
fitb
exemplar
difficult
math
asked
Dec 27, 2012
by
sreemathi.v
1
answer
If A is invertible matrix of order $3\times 3$,then $| A^{-1} |$___________.
cbse
class12
ch4
sec-a
q39
p83
fitb
exemplar
easy
math
asked
Dec 27, 2012
by
sreemathi.v
1
answer
If A is a matrix of order $3\times 3$,then | 3A |=_______________.
cbse
class12
ch4
sec-a
q38
p83
fitb
exemplar
easy
math
asked
Dec 27, 2012
by
sreemathi.v
1
answer
There are two values of $a$ which makes the determinant $\Delta=\begin{vmatrix}1 & -2 & 5\\2 & a & 1\\0 & 4 & 2a\end{vmatrix}= 86,$ then sum of these number is
cbse
class12
ch4
sec-a
q37
p83
objective
exemplar
medium
math
asked
Dec 27, 2012
by
sreemathi.v
1
answer
The value of the determinant $\begin{vmatrix}x & x+y & x+2y\\x+2y & x & x+y\\x+y & x+2y & x\end{vmatrix}$ is
cbse
class12
ch4
sec-a
q36
p82
objective
exemplar
medium
math
asked
Dec 27, 2012
by
sreemathi.v
1
answer
If $x,y,z$ are all different from zero and $\begin{vmatrix}1+x & 1 & 1\\1 & 1+y & 1\\1 & 1 & 1+z\end{vmatrix}$ = 0, then value of $x^{-1}+y^{-1}+z^{-1}$ is
cbse
class12
ch4
sec-a
q35
p82
objective
exemplar
medium
math
asked
Dec 27, 2012
by
sreemathi.v
1
answer
If A and B are invertible matrices,then which of the following is not correct?\[\begin{array}{1 1}(A)\quad adjA=|A|.A^{-1} & (B)\quad det(A)^{-1}=[det(A)]^{-1}\\(C)\quad (AB)^{-1}=B^{-1}A^{-1} & (D)\quad (A+B)^{-1}=B^{-1}+A^{-1}\end{array}\]
cbse
class12
ch4
sec-a
q34
p82
objective
exemplar
easy
math
asked
Dec 27, 2012
by
sreemathi.v
1
answer
If $A=\begin{vmatrix}2 & \lambda & 3\\0 & 2 & 5\\1 & 1 & 3\end{vmatrix},$ then$\;A^{-1}\;$exists if $\lambda = ?$
cbse
class12
ch4
sec-a
q33
p82
objective
exemplar
easy
math
asked
Dec 27, 2012
by
sreemathi.v
1
answer
If $f(x)=\begin{vmatrix}0 & x-a & x-b\\x-a & 0 & x-c\\x-b & x-c & 0\end{vmatrix},then$\[\begin{array}{1 1}(A)\quad f(a)=0 & (B)\quad f(b)=0\\(C)\quad f(0)=0 & (D)\quad f(1)=0\end{array}\]
cbse
class12
ch4
sec-a
q32
p82
objective
exemplar
easy
math
asked
Dec 27, 2012
by
sreemathi.v
1
answer
The maximum value of $\begin{vmatrix}1 & 1 & 1\\1 & 1-sin\theta & 1\\1-\cos\theta & 1 & 1\end{vmatrix}\;(is\;\theta\; is\; real\;number)$
cbse
class12
ch4
sec-a
q31
p81
objective
exemplar
easy
math
asked
Dec 27, 2012
by
sreemathi.v
1
answer
Let $f(t)=\begin{vmatrix}\cos t & t & 1\\2\sin t & t & 2t\\\sin t & t & t\end{vmatrix}$, then $\displaystyle \lim_{t \to 0}\Large \frac{f(t)}{t^2}$ is equal to
cbse
class12
ch4
sec-a
q30
p81
objective
exemplar
medium
math
asked
Dec 26, 2012
by
sreemathi.v
1
answer
If A,B and C are angles of a triangle ,then the determinant$\begin{vmatrix}1 & \cos C & \cos B\\\cos C & 1 & \cos A\\\cos B & \cos A & 1\end{vmatrix}$ is equal to
cbse
class12
ch4
sec-a
q29
p81
objective
exemplar
medium
math
asked
Dec 26, 2012
by
sreemathi.v
1
answer
The number of distinct real roots of $\begin{vmatrix}\sin x & \cos x & \cos x\\\cos x & \sin x & \cos x\\\cos x & \cos x &\sin x\end{vmatrix}=0\;$ in the interval $\large \frac{-\pi}{4}$$ \leq x \leq\large \frac {\pi}{4}$ is
cbse
class12
ch4
sec-a
q28
p81
objective
exemplar
medium
math
asked
Dec 26, 2012
by
sreemathi.v
1
answer
The determinant $\begin{vmatrix}b^2 - ab & b - c & bc - ac\\ab - a^2 & a - b & b^2 - ab\\bc - ac & c - a & ab -a^2\end{vmatrix}$ equals
cbse
class12
ch4
sec-a
q27
p80
objective
exemplar
medium
math
asked
Dec 26, 2012
by
sreemathi.v
1
answer
The area of a triangle with vertices(-3,0),(3,0) and (0,k) is 9 sq. units.The value of k will be\[ \begin{array}{1 1}(A)\quad 9 & (B)\quad 3\\(C)\quad-9 & (D)\quad 6\end{array}\]
cbse
class12
ch4
sec-a
q26
p80
objective
exemplar
easy
math
asked
Dec 26, 2012
by
sreemathi.v
1
answer
Find the value of the determinant $\begin{vmatrix}a-b & b+c & a\\b-c & c+a & b\\c-a & a+b & c\end{vmatrix}$
cbse
class12
ch4
sec-a
q25
p80
objective
exemplar
medium
math
asked
Dec 26, 2012
by
sreemathi.v
1
answer
If $\begin{vmatrix}2x & 5\\8 & x\end{vmatrix}=\begin{vmatrix}6 & -2\\7 & 3\end{vmatrix}$,then value of x is \[\begin{array}{1 1}(A)\quad3 & (B)\quad\pm 3\\(C)\quad \pm 6 & (D)\quad 6\end{array}\]
cbse
class12
ch4
sec-a
q24
p80
objective
exemplar
easy
math
asked
Dec 26, 2012
by
sreemathi.v
1
answer
If x+y+z=0,prove that $\begin{vmatrix}xa & yb & zc\\yc & za & xb\\zb & xc & ya\end{vmatrix}=xyz\begin{vmatrix}a & b & c\\c & a & b\\b & c & a\end{vmatrix}$.
cbse
class12
ch4
sec-b
q23
p80
exemplar
medium
math
asked
Dec 26, 2012
by
sreemathi.v
1
answer
Prove that $\begin{vmatrix}bc - a^2 & ca - b^2 & ab - c^2\\ca - b^2 & ab - c^2 & bc - a^2\\ab -c^2 & bc - a^2 & ca - b^2\end{vmatrix}$ is divisible by a+b+c and find the quotient.
cbse
class12
ch4
sec-b
q22
p79
exemplar
medium
math
asked
Dec 26, 2012
by
sreemathi.v
1
answer
If $a+b+c\neq 0\;and\;\begin{vmatrix}a & b & c\\b & c & a\\c & a & b\end{vmatrix}=0,then\;prove\;that\;a=b=c.$
cbse
class12
ch4
sec-b
q21
p79
exemplar
difficult
math
asked
Dec 26, 2012
by
sreemathi.v
1
answer
Given $A=\begin{bmatrix}2 & 2 & 4\\4 & 2 & 4\\2 & 1 & 5\end{bmatrix},B=\begin{bmatrix}1 & 1 & 0\\2 & 3 & 4\\0 & 1 & 2\end{bmatrix}$,find BA and use this to solve the system of equations y+2z=7,x-y=3,2x+3y+4z=17
cbse
class12
ch4
sec-c
q20
p79
exemplar
difficult
math
asked
Dec 26, 2012
by
sreemathi.v
1
answer
Using matrix method ,solve the system of equations 3x+2y-2z=3,x+2y+3z=6,2x-y+z=2.
cbse
class12
ch4
sec-c
q19
p79
exemplar
medium
math
asked
Dec 26, 2012
by
sreemathi.v
1
answer
Page:
« prev
1
...
19
20
21
22
23
24
25
next »
Home
Ask
Tuition
Questions
Practice
Your payment for
is successful.
Continue
...