Email
Chat with tutors
Login
Ask Questions, Get Answers
Menu
X
home
ask
tuition
questions
practice
papers
mobile
tutors
pricing
X
Recent questions tagged ch4
Questions
If A is an invertible matrix of order 2, then det$(A^{-1})\;$ is equal to: $ (A)\; det\;(A) \quad (B)\; \frac{1}{det\;(A)} \quad (C)\; 1 \quad (D)\; 0 $
cbse
class12
bookproblem
ch4
sec5
q18
p132
easy
sec-a
math
asked
Nov 29, 2012
by
balaji.thirumalai
1
answer
Let $A$ be a nonsingular square matrix of order $3 \times 3.$ Then $| adj \;A| $ is equal to:
cbse
class12
bookproblem
ch4
sec5
q17
p132
easy
sec-a
math
asked
Nov 29, 2012
by
balaji.thirumalai
1
answer
\[ \text{For the matrix A = } \begin{bmatrix} 1&1&1 \\ 1& 2&- 3 \\ 2 &-1& 3 \end{bmatrix} \] \[ \text{Show that } A^{3} - 6A^{2} + 5A + 11I = O. \text{ Hence, find } A^{-1}\]
cbse
class12
bookproblem
ch4
sec5
q15
p132
difficult
sec-c
math
asked
Nov 29, 2012
by
balaji.thirumalai
1
answer
\[ \text{For the matrix A = } \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}, \text{ find the numbers a and b such that } A^{2} + aA + bI = O \]
cbse
class12
bookproblem
ch4
sec5
q14
p132
medium
sec-b
math
asked
Nov 29, 2012
by
balaji.thirumalai
1
answer
\[ \text{If A = } \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}, \text{show that } A^{2} -5A +7I = 0. \text{ Hence find } A^{-1}\]
cbse
class12
bookproblem
ch4
sec5
q13
p132
medium
sec-c
math
asked
Nov 29, 2012
by
balaji.thirumalai
1
answer
\[ \text{Let A = } \begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix} \text{and B = } \begin{bmatrix} 6 & 8 \\ 7 & 9 \end{bmatrix}. \text{Verify that } (AB^{-1}) = B^{-1}A^{-1}\]
cbse
class12
bookproblem
ch4
sec5
q12
p132
medium
sec-c
math
asked
Nov 29, 2012
by
balaji.thirumalai
1
answer
Find the inverse of the matrix (if it exists): \[ \begin{bmatrix} 1&0&0 \\ 0&cos\alpha&sin\alpha \\ 0&sin\alpha&-cos\alpha \\ \end{bmatrix} \]
cbse
class12
bookproblem
ch4
sec5
q11
p132
easy
sec-b
math
asked
Nov 29, 2012
by
balaji.thirumalai
1
answer
Find the inverse of the matrix (if it exists): $\begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \\ \end{bmatrix} $
cbse
class12
bookproblem
ch4
sec5
q10
p132
medium
sec-b
math
asked
Nov 29, 2012
by
balaji.thirumalai
1
answer
Find the inverse of the matrix (if it exists): $ \begin{bmatrix} 2 & 1& 3 \\ 4 &- 1 & 0 \\ -7 & 2 & 1 \\ \end{bmatrix} $
cbse
class12
bookproblem
ch4
sec5
q9
p132
medium
sec-b
math
asked
Nov 29, 2012
by
balaji.thirumalai
1
answer
Find the inverse of the matrix (if it exists): $\begin{bmatrix} 1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1 \\ \end{bmatrix}$
cbse
class12
bookproblem
ch4
sec5
q8
p132
medium
sec-b
math
asked
Nov 29, 2012
by
balaji.thirumalai
1
answer
Find the inverse of the matrix (if it exists): $ \begin{bmatrix} 1&2&3 \\ 0&2&4 \\ 0&0&5 \\ \end{bmatrix} $
cbse
class12
bookproblem
ch4
sec5
q7
p132
medium
sec-b
math
asked
Nov 29, 2012
by
balaji.thirumalai
1
answer
Find the inverse of the matrix (if it exists): $ \begin{bmatrix} -1&5 \\ -3&2 \\ \end{bmatrix} $
cbse
class12
bookproblem
ch4
sec5
q6
p132
easy
sec-a
math
asked
Nov 29, 2012
by
balaji.thirumalai
1
answer
Find the inverse of the matrix (if it exists): $ \begin{bmatrix} 2&-2 \\ 4&3 \\ \end{bmatrix} $
cbse
class12
bookproblem
ch4
sec5
q5
p132
easy
sec-a
math
asked
Nov 29, 2012
by
balaji.thirumalai
1
answer
Verify A (adj A)= (adj A) A = | A | I: \[ \begin{bmatrix} 1&-1&2 \\ 3&0&-2 \\ 1&0&3 \\ \end{bmatrix} \]
cbse
class12
bookproblem
ch4
sec5
q4
p131
medium
sec-c
math
asked
Nov 29, 2012
by
balaji.thirumalai
1
answer
Verify A (adj A)= (adj A) A = | A | I: \[ \begin{bmatrix} 2&3 \\ - 4&-6 \\ \end{bmatrix} \]
cbse
class12
bookproblem
ch4
sec5
q3
p131
medium
sec-b
math
asked
Nov 29, 2012
by
balaji.thirumalai
1
answer
Find the adjoint of the matrix: $\begin{bmatrix} 1&-1&2 \\ 2&3&5 \\ -2&0&1 \end{bmatrix} $
cbse
class12
bookproblem
ch4
sec5
q2
p131
medium
sec-a
math
asked
Nov 29, 2012
by
balaji.thirumalai
1
answer
Find the adjoint of the matrix: $\begin{bmatrix} 1&2 \\ 3&4 \end{bmatrix} $
cbse
class12
bookproblem
ch4
sec5
q1
p131
easy
sec-a
math
asked
Nov 29, 2012
by
balaji.thirumalai
1
answer
If $\Delta = \begin{vmatrix} a_11&a_12&a_13 \\ a_21&a_22&a_23 \\ a_31&a_32&a_33 \end{vmatrix} $ and $A_y$ is Cofactor of $a_y$, then value of $\Delta$ is:
cbse
class12
bookproblem
ch4
sec4
q5
p126
easy
sec-a
math
asked
Nov 29, 2012
by
balaji.thirumalai
1
answer
Using Cofactors of elements of third column, evaluate $ \Delta = \begin{vmatrix} 1&x&yz \\ 1&y&zx \\ 1&z&xy \end{vmatrix} $
cbse
class12
bookproblem
ch4
sec4
q4
p126
easy
sec-a
math
asked
Nov 29, 2012
by
balaji.thirumalai
1
answer
Using Cofactors of elements of second row, evaluate $ \Delta = \begin{vmatrix} 5&3&8 \\ 2&0&1 \\ 1&2&3 \end{vmatrix} $
cbse
class12
bookproblem
ch4
sec4
q3
p126
easy
sec-a
math
asked
Nov 29, 2012
by
balaji.thirumalai
1
answer
Write Minors and Cofactors of the elements of following determinants: $ (i) \quad \begin{vmatrix} 1&0&0 \\ 0&1&0 \\ 0&0&1 \end{vmatrix} $
cbse
class12
bookproblem
ch4
sec4
q2
q2-1
p126
easy
sec-a
math
asked
Nov 29, 2012
by
balaji.thirumalai
1
answer
Write Minors and Cofactors of the elements of following determinants: $ (i) \quad \begin{vmatrix} 2&-4 \\ 0&3 \end{vmatrix}$
cbse
class12
bookproblem
ch4
sec4
q1
q1-1
p126
easy
sec-a
math
asked
Nov 28, 2012
by
balaji.thirumalai
1
answer
If area of triangle is $35\; sq\; units$ with vertices $(2, -6), (5, 4)$ and $(k, 4)$. Then $k$ is
cbse
class12
bookproblem
ch4
sec3
q5
p123
easy
sec-a
math
asked
Nov 28, 2012
by
balaji.thirumalai
1
answer
Find equation of line joining (1, 2) and (3, 6) using determinants
cbse
class12
bookproblem
ch4
sec3
q4
p123
qp1
medium
sec-a
math
asked
Nov 28, 2012
by
balaji.thirumalai
1
answer
Find the value of $k$ if area of triangle is $4\; sq. units$ and vertices are: $(k, 0), (4, 0), (0, 2)$
cbse
class12
bookproblem
ch4
sec3
q3
p123
qp1
easy
sec-a
math
asked
Nov 28, 2012
by
balaji.thirumalai
1
answer
Show that the points A (a, b + c), B (b, c + a), C (c, a + b) are collinear.
cbse
class12
bookproblem
ch4
sec3
q2
p123
medium
sec-a
math
asked
Nov 28, 2012
by
balaji.thirumalai
1
answer
Find area of the triangle with vertices at the point given in (1, 0), (6, 0), (4, 3)
cbse
class12
bookproblem
ch4
sec3
q1
p122
qp1
easy
sec-a
math
asked
Nov 28, 2012
by
balaji.thirumalai
1
answer
Which of the following is correct:
cbse
class12
bookproblem
ch4
sec2
q16
p121
easy
sec-a
math
asked
Nov 28, 2012
by
balaji.thirumalai
1
answer
Let $A$ be a square matrix of order $3 \times 3$, then $ |kA|$ is equal to:
cbse
class12
bookproblem
ch4
sec2
q15
p121
easy
sec-a
math
asked
Nov 28, 2012
by
balaji.thirumalai
1
answer
By using the properties of determinants show that \[ \begin{array}{l} \begin{vmatrix} a^2+1&ab&ac \\ ab&b^2+1&bc \\ ca&cb&c^2+1 \end{vmatrix} = 1+a^2+b^2+c^2 \end{array} \]
cbse
class12
bookproblem
ch4
sec2
q14
p121
medium
sec-b
math
asked
Nov 28, 2012
by
balaji.thirumalai
1
answer
By using the properties of determinants show that \[ \begin{array}{l} \begin{vmatrix} 1+a^2-b^2&2ab&-2b \\ 2ab&1-a^2+b^2&2a \\ 2b&-2a&1-a^2-b^2 \end{vmatrix} = (1+a^2+b^2)^3 \end{array} \]
cbse
class12
bookproblem
ch4
sec2
q13
p121
medium
sec-b
math
asked
Nov 28, 2012
by
balaji.thirumalai
1
answer
By using the properties of determinants show that \[ \begin{array}{l} \begin{vmatrix} 1&x&x^2 \\ x^2&1&x \\ x&x^2&1 \end{vmatrix} = (1-x^3)^2 \end{array} \]
cbse
class12
bookproblem
ch4
sec2
q12
p121
medium
sec-b
math
asked
Nov 28, 2012
by
balaji.thirumalai
1
answer
By using the properties of determinants show that $ (i) \begin{vmatrix} a-b-c&2a&2a \\ 2b&b-c-a&2b \\ 2c&2c&c-a-b \end{vmatrix} = (a+b+c)^3 $
cbse
class12
bookproblem
ch4
sec2
q11
q11-1
p120
medium
sec-b
math
asked
Nov 28, 2012
by
balaji.thirumalai
1
answer
By using the properties of determinants show that $ (i) \begin{vmatrix} x+4&2x&2x \\ 2x&x+4&2x \\ 2x&2x&x+4 \end{vmatrix} = (5x+4)(4-x)^2 $
cbse
class12
bookproblem
ch4
sec2
q10
q10-1
p120
medium
sec-b
math
asked
Nov 28, 2012
by
balaji.thirumalai
1
answer
By using the properties of determinants show that \[\begin{vmatrix} x&x^2&yz \\ y&y^2&zx \\ z&z^2&xy \end{vmatrix} = (x-y)(y-z)(z-x)(xy+yz+zx) \]
cbse
class12
bookproblem
ch4
sec2
q9
p120
difficult
sec-b
math
asked
Nov 28, 2012
by
balaji.thirumalai
1
answer
By using the properties of determinants show that $ (i) \quad \begin{vmatrix} 1&a&a^2 \\ 1&b&b^2 \\ 1&c&c^2 \end{vmatrix} = (a-b)(b-c)(c-a) $
cbse
class12
bookproblem
ch4
sec2
q8
q8-1
p120
easy
sec-b
math
asked
Nov 28, 2012
by
balaji.thirumalai
1
answer
Using the property of determinants and without expanding, prove that \[ \begin{vmatrix} -a^2&ab&ac \\ ba&-b^2&bc \\ ca&cb&-c^2 \end{vmatrix} = 4a^2b^2c^2\]
cbse
class12
bookproblem
ch4
sec2
q7
p120
medium
sec-b
math
asked
Nov 28, 2012
by
balaji.thirumalai
1
answer
Using the property of determinants and without expanding, prove that \[ \begin{vmatrix} 0&a&-b \\ -a&0&-c \\ b&c&0 \end{vmatrix} = 0 \]
cbse
class12
bookproblem
ch4
sec2
q6
p120
easy
sec-a
math
asked
Nov 28, 2012
by
balaji.thirumalai
1
answer
Using the property of determinants and without expanding, prove that \[ \begin{vmatrix} b+c&q+r&y+z \\ c+a&r+p&z+x \\ a+b&p+q&x+y \end{vmatrix} = 2 \begin{vmatrix} a&p&x \\ b&q&y \\ c&r&z \end{vmatrix} \]
cbse
class12
bookproblem
ch4
sec2
q5
p119
easy
sec-a
math
asked
Nov 28, 2012
by
balaji.thirumalai
1
answer
Using the property of determinants and without expanding, prove that \[ \begin{vmatrix} 1&bc&a(b+c) \\ 1&ca&b(c+a) \\ 1&ab&c(a+b) \end{vmatrix} = 0\]
cbse
class12
bookproblem
ch4
sec2
q4
p119
easy
sec-a
math
asked
Nov 28, 2012
by
balaji.thirumalai
1
answer
Using the property of determinants and without expanding, prove that \[ \begin{vmatrix} 2&7&65 \\ 3&8&75 \\ 5&9&86 \end{vmatrix} = 0\]
cbse
class12
bookproblem
ch4
sec2
q3
p119
easy
sec-a
math
asked
Nov 28, 2012
by
balaji.thirumalai
1
answer
Using the property of determinants and without expanding, prove that \[ \begin{vmatrix} a-b&b-c&c-a \\b-c&c-a&a-b \\c-a&a-b&b-c \end{vmatrix} = 0\]
cbse
class12
bookproblem
ch4
sec2
q2
p119
easy
sec-a
math
asked
Nov 28, 2012
by
balaji.thirumalai
1
answer
Using the property of determinants and without expanding, prove that \[ \begin{vmatrix} x&a&x+a \\y&b&y+b \\ z&c&z+c \end{vmatrix} = 0\]
cbse
class12
bookproblem
ch4
sec2
q1
p119
easy
sec-a
math
asked
Nov 28, 2012
by
balaji.thirumalai
1
answer
$ \text{If } \begin{vmatrix} x&2 \\ 18&x \end{vmatrix} = \begin{vmatrix} 6&2 \\ 18&6 \end{vmatrix}$, then $x$ is equal to:
cbse
class12
bookproblem
ch4
sec1
q8
p109
easy
sec-a
math
asked
Nov 28, 2012
by
balaji.thirumalai
1
answer
Find the value of $x$, if $ \begin{vmatrix} 2&4 \\ 5&1 \end{vmatrix} = \begin{vmatrix} 2x&4 \\ 6&x \end{vmatrix}$
cbse
class12
bookproblem
ch4
sec1
q7
q7-1
p109
easy
shortanswer
sec-a
math
asked
Nov 28, 2012
by
balaji.thirumalai
1
answer
If $A = \begin{bmatrix} 1&1&-2\\ 2&1&-3 \\5&4&-9 \end{bmatrix}$, then find $|A|$
cbse
class12
bookproblem
ch4
sec1
q6
p109
easy
sec-a
math
asked
Nov 28, 2012
by
balaji.thirumalai
1
answer
Evaluate the determinant: $\begin{vmatrix} 3&-1&-2 \\ 0&0&-1 \\3&-5&0 \end{vmatrix}$
cbse
class12
bookproblem
ch4
sec1
q5
q5-1
p108
easy
sec-a
math
asked
Nov 28, 2012
by
balaji.thirumalai
1
answer
\[ \text{If A = } \begin{bmatrix} 1&0&1 \\ 0&1&2 \\ 0&0&4 \end{bmatrix}, \text{then show that } |\;3A\;| = 27|\;A\;|\]
cbse
class12
bookproblem
ch4
sec1
q4
p108
easy
sec-a
math
asked
Nov 28, 2012
by
balaji.thirumalai
1
answer
\[ \text{If A = } \begin{bmatrix} 1&2 \\ 4&2 \end{bmatrix}, \text{then show that } |\;2A\;| = 4|\;A;|\]
cbse
class12
bookproblem
ch4
sec1
q3
p108
easy
sec-a
math
asked
Nov 28, 2012
by
balaji.thirumalai
1
answer
Evaluate the determinant: $\begin{vmatrix} cos\theta &-sin\theta \\ sin\theta & cos\theta \end{vmatrix}$
cbse
class12
bookproblem
ch4
sec1
q2
q2-1
p108
easy
sec-a
math
asked
Nov 28, 2012
by
balaji.thirumalai
1
answer
Page:
« prev
1
...
21
22
23
24
25
next »
Home
Ask
Tuition
Questions
Practice
Your payment for
is successful.
Continue
...