Email
Chat with tutors
Login
Ask Questions, Get Answers
Menu
X
home
ask
tuition
questions
practice
papers
mobile
tutors
pricing
X
Recent questions tagged p158
Questions
If $a \; =\; cos \; 2\alpha \; + \; i \; sin \; 2\alpha , \; b \; =\; cos\; 2\beta + i\; sin\; 2\beta\; $ and $\;c\; = \; cos \; 2\gamma\; + \; i sin\; 2\gamma$ prove that $\frac{a^{2}b^{2}+c^{2}}{abc}\; = \; 2\; cos \; 2\left ( \alpha \;+\;\beta \;+\;\gamma \right )$
tnstate
class12
bookproblem
ch3
sec3
exercise3-4
q10
q10-2
p158
asked
Apr 19, 2013
by
geethradh
0
answers
If $a \; =\; cos \; 2\alpha \; + \; i \; sin \; 2\alpha , \; b \; =\; cos\; 2\beta + i\; sin\; 2\beta\; $ and $\;c\; = \; cos \; 2\gamma\; + \; i sin\; 2\gamma$ prove that $\sqrt{abc}\; + \; \frac{1}{\sqrt{abc}}\; = \; 2\; cos\left ( \alpha \;+\;\beta \;+\;\gamma \right )$
tnstate
class12
bookproblem
ch3
sec3
exercise3-4
q10
q10-1
p158
asked
Apr 19, 2013
by
geethradh
0
answers
If $x\;=\cos\;\alpha +i\sin\;\alpha\;;\; y\;= \cos\;\beta + i\sin \;\beta $ prove that $x^{m}y^{n} \;+\large \frac{1}{x^{m}y^{n}}$$= \;2\cos \;\left ( m\alpha + n\beta \right )$
tnstate
class12
bookproblem
ch3
sec3
exercise3-4
q9
p158
mar-2007
modelpaper
asked
Apr 19, 2013
by
geethradh
1
answer
If $x+\large\frac{1}{x}$$ =2\cos\;\theta $ and $y+\large\frac{1}{y}$$=2 \cos \;\phi$ show that $\large\frac{x^{m}}{y^{n}} - \frac{y^{n}}{x^{m}}$$ = 2i \;sin\left ( m\theta -n\phi \right )$
tnstate
class12
bookproblem
ch3
sec3
exercise3-4
q8
q8-2
p158
asked
Apr 19, 2013
by
geethradh
1
answer
If $x+\large\frac{1}{x}$$ =2\cos\;\theta $ and $y+\large\frac{1}{y}=$$2 \cos \;\phi$ show that $\large\frac{x^{m}}{y^{n}}+ \frac{y^{n}}{x^{m}} $$= 2 \cos \left ( m\theta -n\phi \right )$
tnstate
class12
bookproblem
ch3
sec3
exercise3-4
q8
q8-1
p158
asked
Apr 19, 2013
by
geethradh
1
answer
If $x +\large\frac{1}{x} = $$2\; cos\;\theta $ prove that $x^{n} -\large \frac{1}{x^{n}}= $$2i\; sin\;n\theta $
tnstate
class12
bookproblem
ch3
sec3
exercise3-4
q7
q7-2
p158
asked
Apr 18, 2013
by
geethradh
1
answer
If $\; x+\large\frac{1}{x}= $$\;2\;\cos\;\theta \; $ prove that $\;x^{n}+\large\frac{1}{x^{n}}$$= \;2\;\cos\;n\theta\; $
tnstate
class12
bookproblem
ch3
sec3
exercise3-4
q7
q7-1
p158
asked
Apr 18, 2013
by
geethradh
1
answer
If $ \alpha$ and $\beta $ are the roots of $x^{2}-2x+4=0$. Prove that $\alpha ^{n}-\beta ^{n}=i2^{n+1}sin\large\frac{n\pi }{3}$ and calculate $\alpha ^{9}-\beta ^{9}$, where n $\in$ N?
tnstate
class12
bookproblem
ch3
sec3
exercise3-4
q6
p158
oct-2006
oct-2008
mar-2009
modelpaper
asked
Apr 18, 2013
by
geethradh
1
answer
If $\alpha $ and $\beta$ are the roots of the equation $ x^{2}-2px+\left ( p^{2} + q^{2}\right )=0 $ and $ tan \; \theta =\large \frac{q}{y+p} $ show that $ \large\frac{\left (y+\alpha \right )^{n}-\left ( y+\beta \right )^{n}}{\alpha -\beta }$ = $ q^{n-1}\large\frac{sin \;n\theta }{sin\;^{n}\theta }$
tnstate
bookproblem
class12
ch3
exercise3-4
sec3
q5
p158
mar-2007
oct-2009
modelpaper
asked
Apr 18, 2013
by
geethradh
1
answer
To see more, click for the
full list of questions
or
popular tags
.
Home
Ask
Tuition
Questions
Practice
Your payment for
is successful.
Continue
...