Email
Chat with tutors
Login
Ask Questions, Get Answers
Menu
X
home
ask
tuition
questions
practice
papers
mobile
tutors
pricing
X
Recent questions tagged tnstate
Questions
Find the d . c. s of a vector whose direction ratios are $2 , 3 , -6.$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-6
p94
q1
mar-2006
modelpaper
asked
Apr 6, 2013
by
poojasapani_1
1
answer
Verify $(\overrightarrow{a}\times\overrightarrow{b}) \times (\overrightarrow{c}\times\overrightarrow{d})=[\overrightarrow{a} \overrightarrow{b} \overrightarrow{d} ] \overrightarrow{c} - [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c} ] \overrightarrow{d}$, For $\overrightarrow{a}=\overrightarrow{i}+\overrightarrow{j}+\overrightarrow{k},\overrightarrow{ b}=\overrightarrow{2i}+\overrightarrow{k}, \overrightarrow{c}=\overrightarrow{2i}+\overrightarrow{j}+\overrightarrow{k}, \overrightarrow{d}=\overrightarrow{i}+\overrightarrow{j}+\overrightarrow{2k}.$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q12
mar-2009
modelpaper
asked
Apr 6, 2013
by
poojasapani_1
1
answer
Find$ (\overrightarrow{a}\times\overrightarrow{b}) . (\overrightarrow{c}\times\overrightarrow{d}) $if $\overrightarrow{a}=\overrightarrow{i}+\overrightarrow{j}+\overrightarrow{k}, \overrightarrow{b}=\overrightarrow{2i}+\overrightarrow{k}, \overrightarrow{c}=\overrightarrow{2i}+\overrightarrow{j}+\overrightarrow{k}, \overrightarrow{d}=\overrightarrow{i}+\overrightarrow{j}+\overrightarrow{2k}$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q11
asked
Apr 6, 2013
by
poojasapani_1
1
answer
Prove that $(\overrightarrow{a}\times\overrightarrow{b}) . (\overrightarrow{c}\times\overrightarrow{d}) + (\overrightarrow{b}\times\overrightarrow{c}) . (\overrightarrow{a}\times\overrightarrow{d}) + (\overrightarrow{c}\times\overrightarrow{a}) . (\overrightarrow{b}\times\overrightarrow{d})=0$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q10
asked
Apr 6, 2013
by
poojasapani_1
1
answer
For any vector $\overrightarrow{a}$ Prove that $\overrightarrow{i} \times (\overrightarrow{a}\times\overrightarrow{i})+ \overrightarrow{j} \times (\overrightarrow{a}\times\overrightarrow{j})+ \overrightarrow{k } \times(\overrightarrow{a}\times\overrightarrow{k})=\overrightarrow{2a}$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q9
mar-2009
modelpaper
asked
Apr 6, 2013
by
poojasapani_1
1
answer
Prove that $( \overrightarrow{a}\times \overrightarrow{b})\times \overrightarrow{c}= \overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{c})$ if $ \overrightarrow{a}$ and $ \overrightarrow{c}$ are collinear. (Where vector triple product is non-zero).
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q8
asked
Apr 5, 2013
by
poojasapani_1
1
answer
If $ \overrightarrow{a}= \overrightarrow{2i}+ \overrightarrow{3j}- \overrightarrow{5k}, \overrightarrow{b}= -\overrightarrow{1}+ \overrightarrow{j}+ \overrightarrow{2k}$ and $ \overrightarrow{c}= \overrightarrow{4i}- \overrightarrow{2j}+ \overrightarrow{3k}, $ Show that $( \overrightarrow{a}\times \overrightarrow{b})\times \overrightarrow{c} \neq \overrightarrow{a} \times( \overrightarrow{b}\times \overrightarrow{c})$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q7
asked
Apr 5, 2013
by
poojasapani_1
1
answer
Prove thet $ \overrightarrow{a}\times( \overrightarrow{b}\times \overrightarrow{c})+ \overrightarrow{b}\times( \overrightarrow{c}\times{a})+ \overrightarrow{c}\times( \overrightarrow{a}\times \overrightarrow{b})=0$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q6
asked
Apr 5, 2013
by
poojasapani_1
1
answer
if $\ \overrightarrow{a}= \overrightarrow{2i}+ \overrightarrow{3j}- \overrightarrow{k} , \overrightarrow{b}= -\overrightarrow{2i}+ \overrightarrow{5k}, \overrightarrow{c}= \overrightarrow{j}- \overrightarrow{3k}. $ Verify that $ \overrightarrow{a}\times ( \overrightarrow{b}\times \overrightarrow{c})= (\overrightarrow{a}. \overrightarrow{c}) \overrightarrow{b}- (\overrightarrow{a}. \overrightarrow{b})c$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q5
mar-2008
oct-2008
oct-2009
modelpaper
asked
Apr 5, 2013
by
poojasapani_1
1
answer
Show that the points$(1 ,3 ,1), (1, 1, -1),(-1,1, 1),(2 ,2,- 1) $ are lying on the same plane.(Hint : It is enough to prove any three vectors formed by these four points are coplanar).
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q4
asked
Apr 5, 2013
by
poojasapani_1
1
answer
Prove that $\mid[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]\mid=a b c $ if and only if $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ are mutually perpendicular.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p87
q3
asked
Apr 5, 2013
by
poojasapani_1
1
answer
The volume of a parallelopiped whose edges are represented by $-\overrightarrow{12i}+\lambda\overrightarrow{k}, \overrightarrow{3j}-\overrightarrow{k}, \overrightarrow{2i}+\overrightarrow{j}-\overrightarrow{15k} $ is $546;\quad$ find the value of $\lambda$.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p87
q2
jun-2009
mar-2010
modelpaper
asked
Apr 5, 2013
by
poojasapani_1
1
answer
Show that the vectors $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ are coplanar if and only if $\overrightarrow{a}+\overrightarrow{b},\overrightarrow{b}+\overrightarrow{c},\overrightarrow{c}+\overrightarrow{a}$ are coplanar.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p87
q1
cnse
modelpaper-2014
sec-b
q11-a
asked
Apr 5, 2013
by
poojasapani_1
1
answer
If $ cos\;\alpha + cos\;\beta + cos\;\gamma = 0 = sin\;\alpha + sin\;\beta + sin\;\gamma $, prove that $ cos\;2\alpha + cos 2\;\beta + cos\;2\gamma = 0$
tnstate
class12
bookproblem
exercise3-4
q3
q3-3
p157
asked
Apr 5, 2013
by
geethradh
0
answers
If $ cos \;\alpha + cos \;\beta + cos \;\gamma = 0 = sin \;\alpha + sin \;\beta + sin \; \gamma $, prove that $ sin \;3\alpha \; + \;sin \;3\beta + sin \;3\gamma = 3 sin\left ( \alpha\; + \;\beta\; + \;\gamma \;\right )\Large$
tnstate
bookproblem
class12
exercise3-4
q3
q3-2
p157
asked
Apr 5, 2013
by
geethradh
0
answers
Find the magnitude and direction cosines of the moment about the point $(1, -2 ,3)$ of a force $\overrightarrow{2i}+\overrightarrow{3j}+\overrightarrow{6k}$ Whose line of action passes through the origin.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-4
p78
q10
asked
Apr 5, 2013
by
poojasapani_1
1
answer
Show that the torque about the point $ A(3, -1, 3 )$ of a force $\overrightarrow{4i}+\overrightarrow{2j}\overrightarrow{k}$ throught the point $\overrightarrow\;B(5, 2, 4)$ is $\overrightarrow{i}+\overrightarrow{2j}-\overrightarrow{8k}$.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-4
p78
q9
asked
Apr 5, 2013
by
poojasapani_1
1
answer
Forces $\overrightarrow{2i}+\overrightarrow{7j}, \overrightarrow{2i}-\overrightarrow{5j}+\overrightarrow{6k}, \overrightarrow{-i}+\overrightarrow{2j}-\overrightarrow{k}$ act at a point $P$ Whose position vector is $\overrightarrow{4i}-\overrightarrow{3j}-\overrightarrow{2k}.$ Find the moment of the resultant of three forces acting at $P$ about the point $Q$ whose position vector is $\overrightarrow{6i}+\overrightarrow{j}-\overrightarrow{3k}.$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-4
p78
q8
mar-2006
asked
Apr 5, 2013
by
poojasapani_1
1
answer
Prove that sin $(A - B)$= sin $ A$ cos $B$ - cos $A$ sin $B$.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-4
p78
q7
jun-2007
oct-2007
modelpaper
asked
Apr 5, 2013
by
poojasapani_1
1
answer
Prove that twice the area of parallelogram is equal to the area of another parallelogram formed by taking as its adjacent sides the diagonals of the former parallelogram.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-4
p78
q6
asked
Apr 5, 2013
by
poojasapani_1
1
answer
Prove by the vector method, thet the parallelogram on the same base and between the same parallels are equal in area.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-4
p78
q5
asked
Apr 5, 2013
by
poojasapani_1
1
answer
Find the area of the triangle whose vertices are $(3, -1, 2), (1 ,-1, -3 ), $and $(4, -3, 1) $
tnstate
class12
bookproblem
ch2
sec-1
exercise2-4
p78
asked
Apr 5, 2013
by
poojasapani_1
1
answer
Find the area of the parallelogram determined by the sides $\overrightarrow{i}+\overrightarrow{2j}+\overrightarrow{3k}$ and $-\overrightarrow{3i}-\overrightarrow{2j}+\overrightarrow{k}$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-4
p78
q3
asked
Apr 5, 2013
by
poojasapani_1
1
answer
Find the area of the parallelogram whose diagonals are represented by $\overrightarrow{2i}+\overrightarrow{3j}+\overrightarrow{6k}$ and $\overrightarrow{3i}-\overrightarrow{6j}+\overrightarrow{2k}$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-4
p77
q2
asked
Apr 5, 2013
by
poojasapani_1
1
answer
Find the area of parallelogram $A\;B\;C\;D$ whose vertices are $A(-5 ,2 ,5),B(-3 ,6 ,7),C(4 ,-1 ,5)$ and $D(2 ,-5 ,3)$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-4
p77
q1
asked
Apr 5, 2013
by
poojasapani_1
1
answer
If $\cos \alpha + cos \beta + cos \gamma = 0 = sin \alpha + sin \beta + sin \gamma$, prove that $cos 3\alpha + cos 3\beta + cos 3\gamma = 3 cos\left ( \alpha +\beta + \gamma \right )$
tnstate
class12
bookproblem
ch3
sec3
exercise3-4
q3
q3-1
p157
asked
Apr 4, 2013
by
geethradh
1
answer
Simplify: $\Large\frac{\left (cos \;\alpha + \mathit{i} sin \; \alpha \right )^{3}}{\left (sin \;\beta + \mathit{i} cos \;\beta \right)^{4} } \Large$
tnstate
class12
bookproblem
ch3
sec3
exercise3-4
q2
p157
asked
Apr 4, 2013
by
geethradh
1
answer
Simplify: $\Large\frac{\left ( cos2 \theta -\mathit{i}sin2 \theta \right )^{7} \left ( cos 3 \theta +\mathit{i} sin3 \theta \right )^{-5}}{\left (cos 4 \theta + \mathit{i} sin4 \theta \right )^{12} \left ( cos 5 \theta -\mathit{i}sin5 \theta \right )^{-6}}\Large$
tnstate
class12
bookproblem
ch3
sec3
exercise3-4
q1
p157
asked
Apr 4, 2013
by
geethradh
1
answer
If $\overrightarrow{a}\times \overrightarrow{b}= \overrightarrow{C}\times \overrightarrow{d}$ and $\overrightarrow{a}\times \overrightarrow{c}=\overrightarrow{b}\times\overrightarrow{d},$ show that $\overrightarrow{a}- \overrightarrow{d}$ and $\overrightarrow{b}-\overrightarrow{c}$ are parallel.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-3
p73
q10
asked
Apr 4, 2013
by
poojasapani_1
1
answer
Let $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ be unit vectors such that $\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{a}.\overrightarrow{c}=0$ and the angle between $\overrightarrow{b}$ and $\overrightarrow{c}$ is $\Large\frac{\pi}{6}.$ Prove that $\overrightarrow{a}=\pm 2(\overrightarrow{b}\times\overrightarrow{c})$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-3
p72
q9
asked
Apr 4, 2013
by
poojasapani_1
1
answer
For any three vectors $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ show that $\overrightarrow{a}\times(\overrightarrow{b}+\overrightarrow{c})+\overrightarrow{b}\times(\overrightarrow{c}+\overrightarrow{a})+\overrightarrow{c}\times(\overrightarrow{a}+\overrightarrow{b})=\overrightarrow{0}$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-3
p72
q8
asked
Apr 4, 2013
by
poojasapani_1
1
answer
If $\overrightarrow{a}=\overrightarrow{i}+\overrightarrow{3j}-\overrightarrow{2k}$ and $\overrightarrow{b}=\overrightarrow{-i}+\overrightarrow{3k}$ than find $\overrightarrow{a}\times\overrightarrow{b}$. Verify that $\overrightarrow{a}$ and $\overrightarrow{b}$ are perpendicular to$\overrightarrow{a}\times\overrightarrow{b}$ separately.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-3
p72
q7
asked
Apr 4, 2013
by
poojasapani_1
1
answer
If $|\overrightarrow{a}|=2, |\overrightarrow{b}|=7$ and $\overrightarrow{a}\times\overrightarrow{b}=\overrightarrow{3i}-\overrightarrow{2j}+\overrightarrow{6k}$ find the angle between $\overrightarrow{a}$ and $\overrightarrow{b}$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-3
p72
q6
asked
Apr 4, 2013
by
poojasapani_1
1
answer
Find the angle between two vectors $\overrightarrow{a} $ and $\overrightarrow{b} $ if $|\overrightarrow{a} \times \overrightarrow{b}|=\overrightarrow{a}.\overrightarrow{b}$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-3
p72
q5
asked
Apr 4, 2013
by
poojasapani_1
1
answer
Find the vectors whose length $5$ and which are perpendicular to the vectors $\overrightarrow{a}=\overrightarrow{3i}+\overrightarrow{j}-\overrightarrow{4k}$ and $\overrightarrow{b}=\overrightarrow{6i}+\overrightarrow{5j}-\overrightarrow{2k}$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-3
p72
q4
asked
Apr 4, 2013
by
poojasapani_1
1
answer
Find the unit vectors perpendicular to the plane containing the vectors $\overrightarrow{2i}+\overrightarrow{j}+\overrightarrow{k}$ and $\overrightarrow{i}+\overrightarrow{2j}+\overrightarrow{k}$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-3
p72
q3
asked
Apr 4, 2013
by
poojasapani_1
1
answer
If $|\overrightarrow{a}|=3, |\overrightarrow{b}|=4$ and $\overrightarrow{a}.\overrightarrow{b}=9$ than find $|\overrightarrow{a} \times \overrightarrow{b}|$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-3
p72
q2
asked
Apr 4, 2013
by
poojasapani_1
1
answer
Find the magnitude of $\overrightarrow{a} \times \overrightarrow{b}$ if $\overrightarrow{a}=\overrightarrow{2i}+\overrightarrow{k}, \overrightarrow{b}=\overrightarrow{i}+\overrightarrow{j}+\overrightarrow{k}$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-3
p72
q1
asked
Apr 4, 2013
by
poojasapani_1
1
answer
Forces of magnitudes $3$ and $4$ units acting in the directions $\overrightarrow{6i}+ \overrightarrow{2j} +\overrightarrow{3k}$ and $\overrightarrow{3i}-\overrightarrow{2j}+\overrightarrow{6k}$ respectively act on a particle which is displaced from the point $(2,2,-1)$to$( 4,3,1)$. find the work done by the forces.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-2
p62
q8
asked
Apr 4, 2013
by
poojasapani_1
1
answer
The constant forces $\overrightarrow{2i}-\overrightarrow{5j}+ \overrightarrow{6k}, -\overrightarrow{i}+\overrightarrow{2j}-\overrightarrow{k},$and $\overrightarrow{2i}+\overrightarrow{7j} $ act on a particle which is displaced from position $\overrightarrow{4i}-\overrightarrow{3j}-\overrightarrow{2k}$ to position $\overrightarrow{6i}+\overrightarrow{j}-\overrightarrow{3k}$. find the work done.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-2
p62
q7
asked
Apr 4, 2013
by
poojasapani_1
1
answer
A force magnitude $5$ units acting parallel to $\overrightarrow{2i}-\overrightarrow{2j}+ \overrightarrow{k}$ displaces the point of application from $(1,2,3)$to $(5,3,7) $ find the work done.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-2
p62
q6
oct-2006
oct-2009
modelpaper
asked
Apr 4, 2013
by
poojasapani_1
1
answer
Find the work done by the force $f=\overrightarrow{2i} + \overrightarrow{j}+\overrightarrow{k}$ acting on particle, if the particle is displaced from the point with position vector $\overrightarrow{2i}+ \overrightarrow{2j}+ \overrightarrow{2k}$ to the point with the position vector $\overrightarrow{3i}+\overrightarrow{4j}+\overrightarrow{5k}$ .
tnstate
class12
bookproblem
ch2
sec-1
exercise2-2
p62
q5
asked
Apr 4, 2013
by
poojasapani_1
1
answer
Solve : $6x^{4}-25x^{3}+32x^{2}+3x-10=0$ given that one of the roots is $2-i$.
tnstate
class12
ch3
sec3
exercise3-3
q3
p152
asked
Apr 3, 2013
by
geethradh
1
answer
Solve the equation $x^{4}-4x^{3}+11x^{2}-14x+10=0$ if one root is $1+2i$.
tnstate
bookproblem
ch3
sec3
exercise3-3
q2
p152
jun-2009
modelpaper
asked
Apr 3, 2013
by
geethradh
1
answer
Prove by the vector method , cos$(A+B)=$ cos$A$ cos$B$ - sin$A$ sin$B$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-2
p62
q4
mar-2006
mar-2008
modelpaper
asked
Apr 3, 2013
by
poojasapani_1
1
answer
Prove by vector method , The sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of the sides.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-2
p62
q3
asked
Apr 3, 2013
by
poojasapani_1
1
answer
Prove by vector method, The mid point of the hypotenuse of a right angled tringle is equidistant from its vertices.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-2
p62
q2
asked
Apr 3, 2013
by
poojasapani_1
1
answer
Solve the equation $x^{4}-8x^{3}+24x^{2}-32x+20$ = 0 if $3+\mathit{i}$ is a root.
tnstate
class12
bookproblem
ch3
sec3
exercise3-3
q1
p152
mar-2009
modelpaper
asked
Apr 3, 2013
by
geethradh
1
answer
Prove by the vector method If the diagonals of a parallelogram are equal than it is a rectangle.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-2
p62
q1
asked
Apr 3, 2013
by
poojasapani_1
1
answer
Find the projection of $\overrightarrow{3i}+\overrightarrow{j}-\overrightarrow{k}$ on $\overrightarrow{4i}-\overrightarrow{j}+\overrightarrow{2k}$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-1
p56
q14
q14-3
asked
Apr 3, 2013
by
poojasapani_1
1
answer
Page:
« prev
1
...
14
15
16
17
18
19
20
next »
Home
Ask
Tuition
Questions
Practice
Your payment for
is successful.
Continue
...