Email
Chat with tutors
Login
Ask Questions, Get Answers
Menu
X
home
ask
tuition
questions
practice
papers
mobile
tutors
pricing
X
Recent questions tagged ch6
Questions
The values of a and b for which the function$f(x)= \left\{ \begin{array}{1 1} ax+1 & \quad x\leq3 \\ bx+3 & \quad x>3 \end{array} \right. $ is continuous at x=3 are \[(a)\;3a+2b=5 \qquad(b)\;3a=2+3b\qquad(c)\;3,2\qquad(d)\;none\;of\;these.\]
cbse
class12
additionalproblem
kvquestionbank2012
ch6
q19
p17
math
asked
Jan 29, 2013
by
meena.p
0
answers
'C' on LMV for $f(x)=x^2-3x$ in [0,1] is \[(a)\;0 \qquad(b)\;\frac{1}{2}\qquad(c)\;-\frac{1}{2}\qquad(d)\;does\;not\;exist\]
cbse
class12
additionalproblem
kvquestionbank2012
ch6
q18
p17
math
asked
Jan 29, 2013
by
meena.p
0
answers
If $ y=log \tan \bigg(\Large\frac{\pi}{4}+\frac{\pi}{2}\bigg)$then$\Large\frac{dy}{dx}$is\[(a)\;0 \qquad(b)\;\cos x\qquad(c)\;-\sec x\qquad(d)\;\sec x\]
cbse
class12
additionalproblem
kvquestionbank2012
ch6
q17
p17
math
asked
Jan 29, 2013
by
meena.p
0
answers
If $ x=a(\theta-\sin \theta).y=a(1-\cos \theta) \;then\; \Large\frac{d^2y}{dx^2}\;\normalsize at\;\theta=\Large\frac{\pi}{2}\;is.$\[(a)\;\frac{1}{a}\qquad(b)\;\frac{1}{2}\qquad(c)\;-\frac{1}{a}\qquad(d)\;-\frac{1}{2a}\qquad\]
cbse
class12
additionalproblem
kvquestionbank2012
ch6
q16
p17
math
asked
Jan 29, 2013
by
meena.p
0
answers
The minimum value of f(x) = |3-x| + |2+x| + |5-x| is \[(a)\;0\qquad(b)\;7\qquad(c)\;8\qquad(d)\;10\]
cbse
class12
additionalproblem
kvquestionbank2012
ch6
q15
p16
math
asked
Jan 28, 2013
by
meena.p
0
answers
The tangent to the curve\[x=a\sqrt{\cos 2\theta} \cos\theta y=a\sqrt{cos2\theta}\sin \theta\]at the point corresponding to $ \theta =\frac{\pi}{6}$ is \begin{array}{1 1}(a)\;Parallel\; to\; the\; x-axis & \qquad (b)\;Parallel\; to\; the\; y-axis \\ (c)\;Parallel\; to\; the\; line\; y = x & \qquad(d)\;none\;of\;these\end{array}
cbse
class12
additionalproblem
kvquestionbank2012
ch6
q14
p17
math
asked
Jan 28, 2013
by
meena.p
0
answers
If the line ax+by+c = 0 is normal to the curve xy = 1 then \[(a)\;a>0,b>0 \qquad (b)\;a<0,b<0 \qquad(c)\;a<0,b>0\qquad(d)\;a<0,b<0.\]
cbse
class12
additionalproblem
kvquestionbank2012
ch6
q13
p17
math
asked
Jan 28, 2013
by
meena.p
1
answer
$f(x)=\Large\frac{x^2-1}{x^2+1} $ for every real number then minimum value of \begin{array}{1 1}(a)\;does\; not\; exist & \qquad(b)\;is\;not\;attained\;even\;though\;f\;is\;bounded\\(c)\;is\;equal\;to\;1 & \qquad(d)\;is\;equal\;to\;-1\end{array}
cbse
class12
additionalproblem
kvquestionbank2012
ch6
q12
p17
math
asked
Jan 28, 2013
by
meena.p
0
answers
The function $ \Large\frac{\sin(x+\alpha)}{\sin(x+\beta)}$ has no maximum or minimum value if \[(a)\;\beta-\alpha=k\pi\qquad(b)\;\beta-\alpha \neq k\pi\qquad(c)\;\beta-\alpha = 2k\pi\qquad(d)\;None\; of\; these\; where\; k\; is\; an\; integer.\]
cbse
class12
additionalproblem
kvquestionbank2012
ch6
q11
p16
math
asked
Jan 28, 2013
by
meena.p
0
answers
If $f(x)= \left\{ \begin{array}{1 1} 3x^2+12x-1 & \quad :\;-1\leq x \leq 2 \\37-x & \quad :\;2<x\leq 3 \end{array} \right. $ then\[\begin{array}{1 1}(a)\;f(x)\; is\; increasing\; on\; [-1,2]\\(b)\;f(x)\; is\; continuous\; on\; [-1,3]\\(c)\;f'(2) doesn't \;exist\\(d)\;f(x)\; has\; the\; maximum\; value\; at x = 2\end{array}\]
cbse
class12
additionalproblem
kvquestionbank2012
ch6
q9
p16
math
asked
Jan 28, 2013
by
meena.p
0
answers
If $\theta$ is the semivertical angle of a cone of maximum volume and given slant height, then $\tan \theta$ is given by \[(a)\;2\qquad(b)\;1\qquad(c)\;\sqrt 2\qquad(d)\;\sqrt 3\]
cbse
class12
additionalproblem
kvquestionbank2012
ch6
q8
p16
math
asked
Jan 28, 2013
by
meena.p
0
answers
If $ y=a log|x|+bx^2+x $ has its extreme values at x = 1 and x = 2 then\[(a)\;a=2,b=-1\qquad(b)\;a=2,b=-1/2\qquad(c)\;-2,b=1/2\qquad(d)\;none\;of\;these\]
cbse
class12
additionalproblem
kvquestionbank2012
ch6
q7
p16
math
asked
Jan 28, 2013
by
meena.p
0
answers
The difference between the greatest and the least values of the function $ f(x)=\large\cos x+\large\frac{1}{2}\cos 2x-\frac{1}{3}\cos 3x $ is \[(a)\;2/3\qquad(b)\;8/7\qquad(c)\;9/4\qquad(d)\;3/8\]
cbse
class12
additionalproblem
kvquestionbank2012
ch6
q6
p16
math
asked
Jan 28, 2013
by
meena.p
0
answers
The co-ordinates of the point p(x,y) in the first quadrant on the ellipse $\Large\frac{ x^2}{8}+\frac{y^2}{18}$=1 so that the area of the triangle formed by the tangent at P and the co-ordinate axes is the smallest are given by \[(a)\;(2,3)\qquad(b)\;(\sqrt 8,0)\qquad(c)\;(\sqrt {18}, 0)\qquad(d)none\;of\;these\]
cbse
class12
additionalproblem
kvquestionbank2012
ch6
q5
p16
math
asked
Jan 28, 2013
by
meena.p
0
answers
The value of a for which the function $ f(x)=a\sin(x)+\frac{1}{3}\sin 3x.$has an extreme at $ x=\frac{\pi}{3}$ is\[(a)\;1\qquad(b)\;-1\qquad(c)\;0 \qquad(d)\;2\]
cbse
class12
additionalproblem
kvquestionbank2012
ch6
q4
p16
math
asked
Jan 28, 2013
by
meena.p
0
answers
The function $y=\tan^{-1}x-x $ decreases in the interval of \[(a)\;(1,\infty)\qquad(b)\;(-1,\infty)\qquad(c)\;(-\infty,\infty)\qquad(d)\;(0,\infty)\]
cbse
class12
additionalproblem
kvquestionbank2012
ch6
q2
p16
math
asked
Jan 28, 2013
by
meena.p
0
answers
The function $ f(x)=2 log (x-2) - x^2+4x+1 $increases in the interval.\[(a)\;(1,2)\qquad(b)\;(2,3)\qquad(c)\;(5/2,3)\qquad(d)\;(2,4)\]
cbse
class12
additionalproblem
kvquestionbank2012
ch6
q2
p16
math
asked
Jan 28, 2013
by
meena.p
1
answer
The slope of the tangent to the curve represented by $ x=t^2+3t-8\;and\;y=2t^2-2t-5$at the point M(2,-1) is \[(a)\;\frac{7}{6}\qquad(b)\;\frac{2}{3}\qquad(c)\;\frac{3}{2}\qquad(d)\;\frac{6}{7}\]
cbse
class12
additionalproblem
kvquestionbank2012
ch6
q1
p16
math
asked
Jan 28, 2013
by
meena.p
0
answers
The least value of the function $f(x)=ax+\frac{b}{x}(a>0,b>0,x>0)$ is ___________.
cbse
class12
ch6
q64
p142
fitb
exemplar
sec-a
medium
math
asked
Jan 12, 2013
by
sreemathi.v
1
answer
The function $f(x)=\Large\frac{2x^2-1}{x^4}$,x>0,decreases in the interval__________.
cbse
class12
ch6
q63
p142
fitb
exemplar
medium
sec-a
math
asked
Jan 12, 2013
by
sreemathi.v
1
answer
The value of a for which the function $f(x)=sin x-ax+b$ increases on R are__________.
cbse
class12
ch6
q62
p142
fitb
exemplar
sec-a
medium
math
asked
Jan 12, 2013
by
sreemathi.v
1
answer
The equation of normal to the curve y=tan x at (0,0) is___________.
cbse
class12
ch6
q61
p142
fitb
exemplar
sec-a
easy
math
asked
Jan 12, 2013
by
sreemathi.v
1
answer
The curves $y=4x^2+2x-8$ and $y=x^3-x+13$ touch each other at the point_________.
cbse
class12
ch6
q60
p142
fitb
exemplar
sec-a
medium
math
asked
Jan 12, 2013
by
sreemathi.v
1
answer
The maximum value of $\Large\frac{1}{x}$ is:
cbse
class12
ch6
q59
p141
objective
exemplar
sec-a
difficult
math
asked
Jan 12, 2013
by
sreemathi.v
1
answer
$f(x)=x^x$ has a stationary point at
cbse
class12
ch6
q58
p141
objective
exemplar
sec-a
difficult
math
asked
Jan 12, 2013
by
sreemathi.v
1
answer
Maximum slope of the curve $y=x^3+3x^2+9x-27$ is
cbse
class12
ch6
q57
p141
objective
exemplar
sec-a
medium
math
asked
Jan 12, 2013
by
sreemathi.v
1
answer
At $x=\Large\frac{5}{6}$$,f(x)=2\sin 3x+3\cos 3x$ is:
cbse
class12
ch6
q56
p141
objective
exemplar
sec-a
medium
math
asked
Jan 12, 2013
by
sreemathi.v
1
answer
The maximum value of sin x,cos x is
cbse
class12
ch6
q55
p141
objective
exemplar
sec-a
medium
math
asked
Jan 12, 2013
by
sreemathi.v
1
answer
The function $f(x)=2x^3-3x^2-12x+4$,has
cbse
class12
ch6
q54
p141
objective
exemplar
medium
sec-a
math
asked
Jan 12, 2013
by
sreemathi.v
1
answer
The smallest value of the polynomial $x^3-18x^2+96x$ in [0,9] is
cbse
class12
ch6
q53
p141
objective
exemplar
difficult
sec-c
math
asked
Jan 11, 2013
by
sreemathi.v
1
answer
If x is real,the minimum value of $x^2-8x+17$ is
cbse
class12
ch6
q52
p141
objective
exemplar
easy
sec-a
math
asked
Jan 11, 2013
by
sreemathi.v
1
answer
The function f(x)+tan x-x
cbse
class12
ch6
q51
p140
objective
exemplar
sec-a
easy
math
asked
Jan 11, 2013
by
sreemathi.v
1
answer
Which of the following functions is decreasing on $\bigg(0,\frac{1}{2}\bigg)$
cbse
class12
ch6
q50
p140
objective
exemplar
easy
sec-a
math
asked
Jan 11, 2013
by
sreemathi.v
1
answer
The function $f(x)=4\sin^3x-6\sin^2x+12sin x+100$ is strictly
cbse
class12
ch6
q49
p140
objective
exemplar
easy
sec-a
math
asked
Jan 11, 2013
by
sreemathi.v
1
answer
$y=x(x-3)^2$ decreases for the values of x given by:
cbse
class12
ch6
sec-a
q48
p140
objective
exemplar
easy
math
asked
Jan 11, 2013
by
sreemathi.v
1
answer
Let the $f:R\rightarrow R$ be defined by $f(x)=2x+\cos x,$then
cbse
class12
ch6
q47
p140
objective
exemplar
sec-a
easy
math
asked
Jan 11, 2013
by
sreemathi.v
1
answer
The slope of tangent o the curve $x=t^2+3t-8,y=2t^2-2t-5$ at the point (2,-1) is :\[(A)\;\frac{22}{7}\quad(B)\;\frac{6}{7}(C)\;{-6}{7}\quad(D)\;-6\]
cbse
class12
ch6
q44
p139
objective
exemplar
medium
sec-a
math
asked
Jan 11, 2013
by
sreemathi.v
1
answer
The tangent to the curve $y=e^{2x}$ at the point $(0,1)$ meets x-axis at:
cbse
class12
ch6
q43
p139
objective
exemplar
easy
sec-a
math
asked
Jan 11, 2013
by
sreemathi.v
1
answer
The points at which the tangents to be curve $y=x^3-12x+18$ are parallel to x-axis are:
cbse
class12
ch6
q42
p139
objective
exemplar
easy
sec-a
math
asked
Jan 11, 2013
by
sreemathi.v
1
answer
The equation of tangent to the curve $y(1+x^2)=2-x,$where it crosses x-axis is \[\begin{array}{1 1}(A)\;x+5y=2 & (B)\;x-5y=2\\(C)\;5x-y=2 & (D)\;5x+y=2\end{array}\]
cbse
class12
ch6
q41
p139
objective
exemplar
medium
sec-a
math
asked
Jan 11, 2013
by
sreemathi.v
1
answer
If $y=x^4-10$ and if x changes from $2$ to $1.99$,what is the change in y
cbse
class12
ch6
q40
p139
objective
exemplar
easy
sec-a
math
asked
Jan 11, 2013
by
sreemathi.v
1
answer
If the curve $ay+x^2=7$ and $x^3=y,$ cut orthogonally at $(1,1)$ then the value of a is
cbse
class12
ch6
q39
p139
objective
exemplar
easy
sec-a
math
asked
Jan 11, 2013
by
sreemathi.v
1
answer
The equation of normal to the curve $3x^2-y^2=8$ which is parallel to the line x+3y=8 is\begin{array}{1 1}(A)\;3x-y=8 & (B)\;3x+y+8=0\\(C)\;x+3y-8=0 & (D)\;x+3y=0\end{array}
cbse
class12
ch6
q38
p139
objective
exemplar
medium
sec-a
math
asked
Jan 11, 2013
by
sreemathi.v
1
answer
The curve $y=x^\frac{1}{5}$ has at
cbse
class12
ch6
q37
p138
objective
exemplar
easy
sec-a
math
asked
Jan 11, 2013
by
sreemathi.v
1
answer
A ladder, 5 meter long,standing on a horizontal floor,leans against a vertical wall.If the top of the ladder slides downwards at the rate of 10cm/sec,then the rate at which the angle between the floor and the ladder is decreasing when lower end of ladder is 2 meters from the wall measure in "radian/seconds" is?
cbse
class12
ch6
q36
p138
objective
exemplar
medium
sec-a
math
asked
Jan 11, 2013
by
sreemathi.v
1
answer
The sides of an equilateral triangle are increasing at the rate of 2cm/sec.The rate at which the area increases ,when side is 10cm is
cbse
class12
ch6
q35
p138
objective
exemplar
easy
sec-a
math
asked
Jan 11, 2013
by
sreemathi.v
1
answer
The sum of the surface area of a rectangular parallelepiped with sides x,2x and $\Large\frac{x}{3}$ and a sphere is given to be constant.Prove that the sum of their volume is minimum,if x is equal to three times the radius of the sphere.Also find the minimum value of the sum of their volumes.
cbse
class12
ch6
q34
p138
exemplar
math
sec-c
asked
Jan 11, 2013
by
sreemathi.v
0
answers
A metal box with a square base and vertical sides is to contain 1024$cm^3$.The material for the top and bottom costs Rs 5/$cm^2$ and the material for the sides costs Rs2.50/$cm^2$.Find the least cost of the box.
cbse
class12
ch6
q33
p138
exemplar
math
sec-c
asked
Jan 11, 2013
by
sreemathi.v
0
answers
AB is a diameter of a circle and C is any point on the circle.Show that the area of $\bigtriangleup ABC$ is maximum,when it is isosceles.
cbse
class12
ch6
q32
p138
exemplar
difficult
sec-c
math
asked
Jan 11, 2013
by
sreemathi.v
1
answer
If the sum of the surface areas of cube and a sphere is constant.What is the ratio of an edge of the cube to the diameter of the sphere,when the sum of their volumes is minimum?
cbse
class12
ch6
q31
p138
exemplar
difficult
sec-c
math
asked
Jan 11, 2013
by
sreemathi.v
1
answer
Page:
« prev
1
...
10
11
12
13
14
15
16
17
next »
Home
Ask
Tuition
Questions
Practice
Your payment for
is successful.
Continue
...