Email
Chat with tutors
Login
Ask Questions, Get Answers
Menu
X
home
ask
tuition
questions
practice
papers
mobile
tutors
pricing
X
Recent questions tagged matrices
Questions
If $A=\begin{bmatrix}a&b\\b&a\end{bmatrix}$ and $A^2=\begin{bmatrix}\alpha&\beta\\\beta&\alpha\end{bmatrix}$ then
jeemain
math
class12
ch3
matrices
q39
operations-on-matrices
easy
asked
Nov 21, 2013
by
sreemathi.v
1
answer
Let $\omega$ be a complex cube root of unity with $\omega\neq 1$ and $p=[P_{ij}]$ be a $n\times n$ matrix with $P_{ij}=\omega^{i+j}$.Then $P^2\neq 0$ when $n$=
jeemain
math
class12
ch3
matrices
q35
operations-on-matrices
easy
asked
Nov 21, 2013
by
sreemathi.v
1
answer
Let $M$ and $N$ be two $3\times 3$ non singular skew-symmetric matrices such that $MN=NM$.If PT denotes the transpose of P,then $M^2N^2(M^TN)^{-1}(MN^{-1})^T$ is equal to
jeemain
math
class12
ch3
matrices
q33
symmetric-and-skew-symmetric-matrices
easy
asked
Nov 21, 2013
by
sreemathi.v
1
answer
If $P$ is a $3\times 3$ matrix such that $P^T=2P+1$ where $P^T$ is the transpose of $p$ and $I$ is the $3\times 3$ identity matrix then there exists a column matrix $x=\begin{bmatrix}x\\y\\z\end{bmatrix}\neq \begin{bmatrix}0\\0\\0\end{bmatrix}$ such that
jeemain
math
ch3
class12
matrices
q30
transpose-of-a-matrix
easy
asked
Nov 20, 2013
by
sreemathi.v
1
answer
Let $\omega\neq 1$ be a cube root of unity and $S$ be the set of all non-singular matrices of the form $\begin{vmatrix}1&a&b\\\omega&1&c\\\omega^2&\omega&1\end{vmatrix}$ where each of a,b and c is either $\omega$ or $\omega^2$.Then the number of distinct matrices in the set S is
jeemain
math
ch3
class12
matrices
q28
invertible-matrices
easy
asked
Nov 20, 2013
by
sreemathi.v
1
answer
The number of $3\times 3$ matrices A whose entries are either 0 or 1 and for which the system $A=\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}1\\0\\0\end{bmatrix}$ has exactly two distinct solution is
jeemain
math
ch3
class12
matrices
q27
invertible-matrices
easy
asked
Nov 20, 2013
by
sreemathi.v
1
answer
If $A=\begin{vmatrix}\alpha &0\\1 &1\end{vmatrix}$ and $B=\begin{vmatrix}1 &0\\5 &1\end{vmatrix}$then the value of $\alpha$ for which $A^2=B$ is
jeemain
math
ch3
class12
matrices
q25
operations-on-matrices
easy
asked
Nov 20, 2013
by
sreemathi.v
1
answer
If $f(x)=\begin{vmatrix}1 &x&x+1\\2x&x(x-1)&(x+1)x\\3x(x-1)&x(x-1)(x-2)&(x+1)x(x-1)\end{vmatrix}$ then $f(100)$ is equal to
jeemain
math
ch3
class12
matrices
q23
elementary-operation-(transformation)-of-a-matrix
easy
asked
Nov 20, 2013
by
sreemathi.v
1
answer
If $A$ and $B$ are square matrices of equal degree,then which one is correct among the following
jeemain
math
ch3
class12
matrices
q17
equality-of-matrices
easy
asked
Nov 20, 2013
by
sreemathi.v
1
answer
If $\omega(\neq 1)$ is a cube root of unity,then $\begin{vmatrix}1 &1+i+\omega^2&\omega^2\\1-i&-1&\omega^2-1\\-i&-i+\omega-1&-1\end{vmatrix}$=
jeemain
math
ch3
class12
matrices
q16
elementary-operation-transformation)-of-a-matrix
easy
asked
Nov 20, 2013
by
sreemathi.v
1
answer
Given that $x=-9$ is a root of $\begin{vmatrix}x&3&7\\2 &x&2\\7&6&x\end{vmatrix}$ = 0, the other two roots are
jeemain
math
class12
unit3
matrices
q13
operations-on-matrices
easy
asked
Nov 20, 2013
by
sreemathi.v
1
answer
If $\begin{bmatrix}1 &-\tan\theta\\\tan\theta&1\end{bmatrix}\begin{bmatrix}1 &\tan\theta\\-\tan\theta&1\end{bmatrix}^{-1}$ = $\begin{bmatrix}a &-b\\b&a\end{bmatrix}$ then find $a,b$
jeemain
math
class12
ch3
matrices
operations-on-matrices
medium
asked
Nov 19, 2013
by
sreemathi.v
1
answer
Find the product of the matrices $\begin{bmatrix}2 &3&4\\-1&2&-5\end{bmatrix}$ and $\begin{bmatrix}1&2\\3&-4\\-5&6\end{bmatrix}$
jeemain
math
class12
ch3
matrices
operations-on-matrices
easy
asked
Nov 19, 2013
by
sreemathi.v
1
answer
Given matrices $A=\begin{bmatrix}5 &-2&0\\3&0&5\\-1&0&8\end{bmatrix}$, $B=\begin{bmatrix}0 &-2\\1 &0\\0&5\end{bmatrix}$, find $(A+B)$.
jeemain
math
ch3
matrices
operations-on-matrices
easy
class12
asked
Nov 19, 2013
by
sreemathi.v
1
answer
If A=$\begin{bmatrix}3 & 2\\1 & 1\end{bmatrix}$ find the values of a and b, such that $A^2+aA+bI=0.$
cbse
class12
math
additionalproblem
ch3
sec-a
jeemain
matrices-and-determinants
matrices
easy
asked
Apr 4, 2013
by
sreemathi.v
1
answer
If $\;A=\small\frac{1}{\pi}$$\begin{bmatrix}sin^{-1}(\pi x) &tan^{-1}\big(\frac{\pi}{x}\big)\\ sin^{-1}\big(\frac{\pi}{x} \big)&cot^{-1}(\pi x)\end{bmatrix}\;$ and $\;B=\small\frac{1}{\pi} $$\begin{bmatrix}-cos^{-1}(\pi x) &tan^{-1}\big(\frac{x}{\pi}\big)\\ sin^{-1}\big(\frac{x}{\pi} \big)&-tan^{-1}(\pi x)\end{bmatrix}$ then $A-B$ is equal to
cbse
class12
ch3
q56
p60
objective
exemplar
easy
sec-a
math
jeemain
matrices-and-determinants
matrices
asked
Mar 10, 2013
by
sreemathi.v
1
answer
If \( A = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix} \), find A + A', where A' is the transpose of matrix A.
cbse
class12
modelpaper
2012
sec-a
matrices
easy
math
asked
Feb 9, 2013
by
thanvigandhi_1
1
answer
If $\begin{vmatrix} x & x \\ 1 & x \end{vmatrix} = \begin{vmatrix} 3 & 4 \\ 1 & 2 \end{vmatrix} $write the positive value of x.
cbse
class12
modelpaper
2012
sec-a
matrices
easy
math
asked
Feb 6, 2013
by
thanvigandhi_1
1
answer
If \( A = [ a_{ij}],\) where \( a_{ij}= \left\{ \begin{array}{l l}i+j, & \quad if\; { i \geq j}\\ i-j, & \quad if\; { i < j} \\ \end{array}. \right.\) construct a 3 x 2 matrix A.
cbse
class12
modelpaper
2012
sec-a
q4
matrices
easy
math
asked
Jan 25, 2013
by
thanvigandhi_1
0
answers
If a matrix has 18 elements, what are the possible orders it can have? What, if it has 5 elements.
cbse
class12
modelpaper
2012
sec-a
q4
matrices
easy
math
asked
Jan 9, 2013
by
thanvigandhi_1
1
answer
Find the value of x, if \[ \begin {bmatrix} 3x+y & -y \\ 2y-x & 3 \end {bmatrix} = \begin {bmatrix} 1 & 2 \\ -5 & 3 \end {bmatrix} \]
cbse
class12
2009
sec-a
matrices
math
asked
Dec 21, 2012
by
thanvigandhi_1
0
answers
Page:
« prev
1
2
Home
Ask
Tuition
Questions
Practice
Your payment for
is successful.
Continue
...