Email
Chat with tutors
Login
Ask Questions, Get Answers
Menu
X
home
ask
tuition
questions
practice
papers
mobile
tutors
pricing
X
Recent questions tagged sec-1
Questions
Derive the equation of the plane in the intercept form.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-8
p112
q14
mar-2010
modelpaper
asked
Apr 8, 2013
by
poojasapani_1
1
answer
Find the vector cartesian equation of the plane passing through the points with position vectors $\overrightarrow{3i}+\overrightarrow{4j}+\overrightarrow{2k}, \overrightarrow{2i}-\overrightarrow{2j}-\overrightarrow{2k},$ and $\overrightarrow{7i}+\overrightarrow{k}.$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-8
p112
q13
jun-2009
modelpaper
sec-b
asked
Apr 8, 2013
by
poojasapani_1
1
answer
Find the vector cartesian equation of the plane containing the line $\large\frac{x-2}{2}=\frac{y-2}{3}=\frac{z-1}{-2}$ and passing through the point $(-1 , 1 , -1 )$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-8
p112
q12
asked
Apr 8, 2013
by
poojasapani_1
1
answer
Find the vector and cartesian equations of the plane through the points $(1 , 2 , 3 )$and $(2 , 3 , 1 )$ perpendicular to the plane $ 3x-2y+4z-5=0$
modelpaper
tnstate
class12
bookproblem
ch2
sec-1
exercise2-8
p111
q11
mar-2006
oct-2006
oct-2007
jun-2008
asked
Apr 8, 2013
by
poojasapani_1
1
answer
Find the vector and cartesian equations of the plane passing through the points $ A(1 , -2 , 3 )$ and $B(-1 , 2 , -1 )$ and is parallel to the line $ \large\frac{x-2}{2}=\frac{y+1}{3}=\frac{z-1}{4}.$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-8
p111
q10
asked
Apr 8, 2013
by
poojasapani_1
1
answer
Find the vector and cartesian equation to the plane through the point $(-1 , 3 , 2 ) $ and perpendicular to the planes $x+2y+2z=5$ and $3x+y+2z=8.$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-8
p111
q9
asked
Apr 7, 2013
by
poojasapani_1
1
answer
Find the vector and cartesian equations of the plane through the point $(1 , 3 , 2 ) $ and parallel to the lines $\large\frac{x+1}{2}=\frac{y+2}{-1}=\frac{z+3}{3}$ and parallel to the line $\large\frac{x-2}{1}=\frac{y+1}{2}=\frac{z+2}{2}$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-8
p111
q8
asked
Apr 7, 2013
by
poojasapani_1
1
answer
Find the vector and cartesian equations of the plane containing the line $\Large\frac{x-2}{2}=\frac{y-2}{3}=\frac{z-1}{3}$ and parallel to the line $\Large\frac{x+1}{3}=\frac{y-1}{2}=\frac{z+1}{1}$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-8
p111
q7
asked
Apr 7, 2013
by
poojasapani_1
1
answer
Find the vector and cartesian equations of the plane through the point $(2 , -1 , 4 )$ and parallel to the plane $\overrightarrow{r} . (\overrightarrow{4i}-\overrightarrow{12j}-\overrightarrow{3k})=7.$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-8
p111
q6
asked
Apr 7, 2013
by
poojasapani_1
1
answer
Find the equation of the plane through the point whose $p.v. $ is $\overrightarrow{2i}-\overrightarrow{j}+\overrightarrow{k}$ and perpendicular to the vector $\overrightarrow{4i}+\overrightarrow{2j}-\overrightarrow{3k}$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-8
p111
q5
asked
Apr 7, 2013
by
poojasapani_1
1
answer
The foot of the perpendicular drawn from the origin to the plane is $(8 , -4 , 3 )$ find the equation of the plane.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-8
p111
q4
asked
Apr 7, 2013
by
poojasapani_1
1
answer
Find the length of the perpendicular frome the origin to the plane$\overrightarrow{r} . (\overrightarrow{3i}+\overrightarrow{4j}+\overrightarrow{12k})=26$.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-8
p111
q3
asked
Apr 7, 2013
by
poojasapani_1
1
answer
Find the unit normal vectors to the plane $2x-y+2z=5$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-8
p111
q2
asked
Apr 7, 2013
by
poojasapani_1
1
answer
Find the vector and cartesian equations of a plane which is at a distance of $18$ units from the origin and which is normal to the vector $\overrightarrow{2i}+\overrightarrow{7j}+\overrightarrow{8k}$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-8
p111
q1
asked
Apr 7, 2013
by
poojasapani_1
1
answer
If the point $(\lambda , 0 , 3 ), (1 , 3 , -1 )$ and $(-5 , -3 , 7 )$ are collinear than find $\lambda$.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-7
p100
q6
asked
Apr 7, 2013
by
poojasapani_1
1
answer
Show that $(2 , -1 ,3 ),(1 ,-1, 0 )$ and $(3, -1, 6 )$ are collinear.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-7
p100
q5
asked
Apr 7, 2013
by
poojasapani_1
1
answer
Find the shortest distance between the skew lines $\large\frac{x-6}{3}=\frac{y-7}{-1}=\frac{z-4}{1}$ and $\large\frac{x}{-3}=\frac{y+9}{2}=\frac{z-2}{4}$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-7
p100
q4
asked
Apr 7, 2013
by
poojasapani_1
1
answer
Show that the lines $\large \frac{x-1}{1}=\frac{y+1}{-1}=\frac{z}{3}$ and $\large\frac{x-2}{1}=\frac{y-1}{2}=\frac{-z-1}{1}$ intersect and find their point of intersection.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-7
p100
q3
jun-2006
modelpaper
asked
Apr 7, 2013
by
poojasapani_1
1
answer
Show that the following two lines are skew lines: $\overrightarrow{r}=(\overrightarrow{3i}+\overrightarrow{5j}+\overrightarrow{7k})+ t (\overrightarrow{i}-\overrightarrow{2j}+\overrightarrow{k})$ and $\overrightarrow{r}=(\overrightarrow{i}+\overrightarrow{j}+\overrightarrow{k}) + s (\overrightarrow{7i}-\overrightarrow{6j}+\overrightarrow{7k})$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-7
p100
q2
jun-2007
modelpaper
asked
Apr 7, 2013
by
poojasapani_1
1
answer
Find the shortest distance between the parallel lines $\large\frac{x-1}{-1}=\frac{y}{3}=\frac{z+3}{2} $ and $\large\frac{x-3}{-1}=\frac{y+1}{3}=\frac{z-1}{2} $
tnstate
class12
bookproblem
ch2
sec-1
exercise2-7
p100
q1
q1-2
asked
Apr 7, 2013
by
poojasapani_1
1
answer
Find the shortest distance between the parallel lines $\overrightarrow{r}=(\overrightarrow{2i}-\overrightarrow{j}-\overrightarrow{k}) + t (\overrightarrow{i}-\overrightarrow{2j}+\overrightarrow{3k})$ and $\overrightarrow{r}=(\overrightarrow{i}+\overrightarrow{2j}+\overrightarrow{k}) + s (\overrightarrow{i}-\overrightarrow{2j}+\overrightarrow{3k})$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-7
p100
q1
q1-1
asked
Apr 7, 2013
by
poojasapani_1
1
answer
Find the angle between the lines $\overrightarrow{r}=\overrightarrow{5i}-\overrightarrow{7j}+\mu (-\overrightarrow{i}+\overrightarrow{4j}+\overrightarrow{2k}) \overrightarrow{r}=-\overrightarrow{2i}+\overrightarrow{k}+\lambda (\overrightarrow{3i}+\overrightarrow{4k})$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-6
p94
q9
asked
Apr 7, 2013
by
poojasapani_1
1
answer
Find the angle between the following lines. $\large\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-4}{6}$ and $ x+1=\large\frac{y+2}{2}=\frac{z-4}{2}$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-6
p94
q8
mar-2009
modelpaper
asked
Apr 6, 2013
by
poojasapani_1
1
answer
Find the vector and cartesian equation of the line joining the points $(1 , -2 , 1 )$ and $(0 , -2 , 3 ).$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-6
p94
q7
asked
Apr 6, 2013
by
poojasapani_1
1
answer
Find the vector and cartesian equation of the line through the point $(3 , -4 , -2 )$ and parallel to vector $\overrightarrow{9i} +\overrightarrow{6j} +\overrightarrow{2k}$.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-6
p94
q6
jun-2006
modelpaper
asked
Apr 6, 2013
by
poojasapani_1
1
answer
Find direction consines of the line joinong $(2 , -3 , 1 )$and $(3 , 1 , -2 ).$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-6
p94
q5
asked
Apr 6, 2013
by
poojasapani_1
1
answer
A vector $\overrightarrow{r}$ has length $35\sqrt{2}$ and direction ratios $(3 , 4 , 5 ),$ Find the direction consines and components of $\overrightarrow{r}$.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-6
p94
q4
asked
Apr 6, 2013
by
poojasapani_1
1
answer
What are the d . c . s of the vector equally inclined to the axes?
tnstate
class12
bookproblem
ch2
sec-1
exercise2-6
p94
q3
asked
Apr 6, 2013
by
poojasapani_1
1
answer
Can a vector have direction angles $45^{\circ}, 60^{\circ}, 120^{\circ}$?
tnstate
class12
bookproblem
ch2
sec-1
exercise2-6
p94
q2
q2-2
asked
Apr 6, 2013
by
poojasapani_1
1
answer
Can a vector have direction angles $30^{\circ},45^{\circ},60^{\circ}$?
tnstate
class12
bookproblem
ch2
sec-1
exercise2-6
p94
q2
q2-1
asked
Apr 6, 2013
by
poojasapani_1
1
answer
Find the d . c. s of a vector whose direction ratios are $2 , 3 , -6.$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-6
p94
q1
mar-2006
modelpaper
asked
Apr 6, 2013
by
poojasapani_1
1
answer
Verify $(\overrightarrow{a}\times\overrightarrow{b}) \times (\overrightarrow{c}\times\overrightarrow{d})=[\overrightarrow{a} \overrightarrow{b} \overrightarrow{d} ] \overrightarrow{c} - [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c} ] \overrightarrow{d}$, For $\overrightarrow{a}=\overrightarrow{i}+\overrightarrow{j}+\overrightarrow{k},\overrightarrow{ b}=\overrightarrow{2i}+\overrightarrow{k}, \overrightarrow{c}=\overrightarrow{2i}+\overrightarrow{j}+\overrightarrow{k}, \overrightarrow{d}=\overrightarrow{i}+\overrightarrow{j}+\overrightarrow{2k}.$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q12
mar-2009
modelpaper
asked
Apr 6, 2013
by
poojasapani_1
1
answer
Find$ (\overrightarrow{a}\times\overrightarrow{b}) . (\overrightarrow{c}\times\overrightarrow{d}) $if $\overrightarrow{a}=\overrightarrow{i}+\overrightarrow{j}+\overrightarrow{k}, \overrightarrow{b}=\overrightarrow{2i}+\overrightarrow{k}, \overrightarrow{c}=\overrightarrow{2i}+\overrightarrow{j}+\overrightarrow{k}, \overrightarrow{d}=\overrightarrow{i}+\overrightarrow{j}+\overrightarrow{2k}$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q11
asked
Apr 6, 2013
by
poojasapani_1
1
answer
Prove that $(\overrightarrow{a}\times\overrightarrow{b}) . (\overrightarrow{c}\times\overrightarrow{d}) + (\overrightarrow{b}\times\overrightarrow{c}) . (\overrightarrow{a}\times\overrightarrow{d}) + (\overrightarrow{c}\times\overrightarrow{a}) . (\overrightarrow{b}\times\overrightarrow{d})=0$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q10
asked
Apr 6, 2013
by
poojasapani_1
1
answer
For any vector $\overrightarrow{a}$ Prove that $\overrightarrow{i} \times (\overrightarrow{a}\times\overrightarrow{i})+ \overrightarrow{j} \times (\overrightarrow{a}\times\overrightarrow{j})+ \overrightarrow{k } \times(\overrightarrow{a}\times\overrightarrow{k})=\overrightarrow{2a}$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q9
mar-2009
modelpaper
asked
Apr 6, 2013
by
poojasapani_1
1
answer
Prove that $( \overrightarrow{a}\times \overrightarrow{b})\times \overrightarrow{c}= \overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{c})$ if $ \overrightarrow{a}$ and $ \overrightarrow{c}$ are collinear. (Where vector triple product is non-zero).
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q8
asked
Apr 5, 2013
by
poojasapani_1
1
answer
If $ \overrightarrow{a}= \overrightarrow{2i}+ \overrightarrow{3j}- \overrightarrow{5k}, \overrightarrow{b}= -\overrightarrow{1}+ \overrightarrow{j}+ \overrightarrow{2k}$ and $ \overrightarrow{c}= \overrightarrow{4i}- \overrightarrow{2j}+ \overrightarrow{3k}, $ Show that $( \overrightarrow{a}\times \overrightarrow{b})\times \overrightarrow{c} \neq \overrightarrow{a} \times( \overrightarrow{b}\times \overrightarrow{c})$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q7
asked
Apr 5, 2013
by
poojasapani_1
1
answer
Prove thet $ \overrightarrow{a}\times( \overrightarrow{b}\times \overrightarrow{c})+ \overrightarrow{b}\times( \overrightarrow{c}\times{a})+ \overrightarrow{c}\times( \overrightarrow{a}\times \overrightarrow{b})=0$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q6
asked
Apr 5, 2013
by
poojasapani_1
1
answer
if $\ \overrightarrow{a}= \overrightarrow{2i}+ \overrightarrow{3j}- \overrightarrow{k} , \overrightarrow{b}= -\overrightarrow{2i}+ \overrightarrow{5k}, \overrightarrow{c}= \overrightarrow{j}- \overrightarrow{3k}. $ Verify that $ \overrightarrow{a}\times ( \overrightarrow{b}\times \overrightarrow{c})= (\overrightarrow{a}. \overrightarrow{c}) \overrightarrow{b}- (\overrightarrow{a}. \overrightarrow{b})c$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q5
mar-2008
oct-2008
oct-2009
modelpaper
asked
Apr 5, 2013
by
poojasapani_1
1
answer
Show that the points$(1 ,3 ,1), (1, 1, -1),(-1,1, 1),(2 ,2,- 1) $ are lying on the same plane.(Hint : It is enough to prove any three vectors formed by these four points are coplanar).
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p88
q4
asked
Apr 5, 2013
by
poojasapani_1
1
answer
Prove that $\mid[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]\mid=a b c $ if and only if $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ are mutually perpendicular.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p87
q3
asked
Apr 5, 2013
by
poojasapani_1
1
answer
The volume of a parallelopiped whose edges are represented by $-\overrightarrow{12i}+\lambda\overrightarrow{k}, \overrightarrow{3j}-\overrightarrow{k}, \overrightarrow{2i}+\overrightarrow{j}-\overrightarrow{15k} $ is $546;\quad$ find the value of $\lambda$.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p87
q2
jun-2009
mar-2010
modelpaper
asked
Apr 5, 2013
by
poojasapani_1
1
answer
Show that the vectors $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ are coplanar if and only if $\overrightarrow{a}+\overrightarrow{b},\overrightarrow{b}+\overrightarrow{c},\overrightarrow{c}+\overrightarrow{a}$ are coplanar.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-5
p87
q1
cnse
modelpaper-2014
sec-b
q11-a
asked
Apr 5, 2013
by
poojasapani_1
1
answer
Find the magnitude and direction cosines of the moment about the point $(1, -2 ,3)$ of a force $\overrightarrow{2i}+\overrightarrow{3j}+\overrightarrow{6k}$ Whose line of action passes through the origin.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-4
p78
q10
asked
Apr 5, 2013
by
poojasapani_1
1
answer
Show that the torque about the point $ A(3, -1, 3 )$ of a force $\overrightarrow{4i}+\overrightarrow{2j}\overrightarrow{k}$ throught the point $\overrightarrow\;B(5, 2, 4)$ is $\overrightarrow{i}+\overrightarrow{2j}-\overrightarrow{8k}$.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-4
p78
q9
asked
Apr 5, 2013
by
poojasapani_1
1
answer
Forces $\overrightarrow{2i}+\overrightarrow{7j}, \overrightarrow{2i}-\overrightarrow{5j}+\overrightarrow{6k}, \overrightarrow{-i}+\overrightarrow{2j}-\overrightarrow{k}$ act at a point $P$ Whose position vector is $\overrightarrow{4i}-\overrightarrow{3j}-\overrightarrow{2k}.$ Find the moment of the resultant of three forces acting at $P$ about the point $Q$ whose position vector is $\overrightarrow{6i}+\overrightarrow{j}-\overrightarrow{3k}.$
tnstate
class12
bookproblem
ch2
sec-1
exercise2-4
p78
q8
mar-2006
asked
Apr 5, 2013
by
poojasapani_1
1
answer
Prove that sin $(A - B)$= sin $ A$ cos $B$ - cos $A$ sin $B$.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-4
p78
q7
jun-2007
oct-2007
modelpaper
asked
Apr 5, 2013
by
poojasapani_1
1
answer
Prove that twice the area of parallelogram is equal to the area of another parallelogram formed by taking as its adjacent sides the diagonals of the former parallelogram.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-4
p78
q6
asked
Apr 5, 2013
by
poojasapani_1
1
answer
Prove by the vector method, thet the parallelogram on the same base and between the same parallels are equal in area.
tnstate
class12
bookproblem
ch2
sec-1
exercise2-4
p78
q5
asked
Apr 5, 2013
by
poojasapani_1
1
answer
Find the area of the triangle whose vertices are $(3, -1, 2), (1 ,-1, -3 ), $and $(4, -3, 1) $
tnstate
class12
bookproblem
ch2
sec-1
exercise2-4
p78
asked
Apr 5, 2013
by
poojasapani_1
1
answer
Page:
« prev
1
...
7
8
9
10
11
12
next »
Home
Ask
Tuition
Questions
Practice
Your payment for
is successful.
Continue
...