Email
Chat with tutors
Login
Ask Questions, Get Answers
Menu
X
home
ask
tuition
questions
practice
papers
mobile
tutors
pricing
X
Recent questions in Differential Equations
Questions
>>
CBSE XII
>>
Math
>>
Differential Equations
True-or-False: The solution of the differential equation $\large\frac{dy}{dx} = \frac{x+2y}{x}$ is $x+y=kx^2$.
cbse
class12
ch9
sec-a
q77ix
p203
true-or-false
exemplar
medium
math
asked
Jan 21, 2013
by
sreemathi.v
1
answer
True-or-False: Differential equation representing the family of curves $y=e^x(A\cos x+B\sin x)$ is $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$.
cbse
class12
ch9
sec-a
q77viii
p203
true-or-false
exemplar
medium
math
asked
Jan 21, 2013
by
sreemathi.v
1
answer
True-or-False: The solution of $\large\frac{dy}{dx}$$=\bigg(\large\frac{y}{x}\bigg)^\frac{1}{3}$ is $y^{\large\frac{2}{3}}-x^{\large\frac{2}{3}}=c$.
cbse
class12
ch9
sec-a
q77vii
p203
true-or-false
exemplar
easy
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
True-or-False: The differential equation representing the family of circles $x^2+(y-a)^2=a^2$ will be of order two.
cbse
class12
ch9
q77vi
p203
true-or-false
exemplar
sec-a
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
True-or-False: Number of arbitrary constant in the particular solution of a differential equation of order two is two.
cbse
class12
ch9
q77v
p203
true-or-false
exemplar
easy
sec-a
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
True-or-False: Correct substitution for the solution of the differential equation of the type $\large\frac{dx}{dy}$$=g(x,y)$,where $g(x,y)$ is a homogeneous function of zero degree is $x=vy.$
cbse
class12
ch9
sec-a
q77iv
p203
true-or-false
exemplar
easy
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
True-or-False: Correct substitution for the solution of the differential equation of the type $\large\frac{dy}{dx}$$=f(x,y)$,where f(x,y) is a homogeneous function of zero degree is $y=vx.$
cbse
class12
ch9
sec-a
q77iii
p202
true-or-false
exemplar
easy
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
True-or-False: Solution of the differential equation of the type $\large\frac{dx}{dy}$$+P_1x=Q_1$ is given by $x.(I.F)=\int (I.F)Q_1dy.$
cbse
class12
ch9
sec-a
q77ii
p202
true-or-false
exemplar
easy
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
True-or-False: Integrating factor of the differential equation of the form $\large\frac{dx}{dy}$$+P_1x=Q_1$ is given by $e^{\int P_1dy}$.
cbse
class12
ch9
sec-a
q77i
p202
true-or-false
exemplar
easy
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
The integrating factor of $\large\frac{dy}{dx}-y=\frac{1-y}{x}$ is__________.
cbse
class12
ch9
sec-a
q76xi
p202
fitb
exemplar
easy
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
The solution of the differential equation $\cot y dx=xdy$ is __________.
cbse
class12
ch9
sec-a
q76x
p202
fitb
exemplar
easy
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
The general solution of $\frac{dy}{dx}-y=\sin x$ is
cbse
class12
ch9
sec-a
q76ix
p202
fitb
exemplar
difficult
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
The solution of the differential equation $y dx + (x + xy) dy = 0$ is
cbse
class12
ch9
sec-a
q76viii
p202
fitb
exemplar
medium
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
The solution of $(1+x^2)\frac{dy}{dx}+2xy-4x^2=0$ is ___________.
cbse
class12
ch9
sec-a
q76vii
p202
fitb
exemplar
difficult
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
The solution of the differential equation $x\large\frac{dy}{dx}$$+2y=x^2$ is
cbse
class12
ch9
sec-a
q76vi
p202
fitb
exemplar
medium
easy
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
General solution of the differential equation of the type $\Large\frac{dy}{dx}$$+P_1x=Q_1$ is given by ______.
cbse
class12
ch9
sec-a
q76v
p202
fitb
exemplar
easy
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
$\large\frac{dy}{dx}+\frac{y}{xlog x}=\frac{1}{x}$ is an equation of the type _____________.
cbse
class12
ch9
sec-a
q76iv
p202
fitb
exemplar
easy
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
The number of arbitrary constants in the general solution of a differential equation of order three is ________.
cbse
class12
ch9
sec-a
q76iii
p202
fitb
exemplar
easy
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
The degree of the differential equation $\sqrt{1+\bigg(\large\frac{dy}{dx}\bigg)^2}$$=x$ is ___________.
cbse
class12
ch9
sec-a
q76ii
p201
fitb
exemplar
easy
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
The degree of the differential equation $\large\frac{d^2y}{dx^2}$$+e^{\large\frac{dy}{dx}}$$=0$ is __________.
cbse
class12
ch9
sec-a
q76i
p201
fitb
exemplar
easy
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
The solution of the differential equation $\large\frac{dy}{dx}+\frac{2xy}{(1+x^2)}=\frac{1}{(1+x^2)^2}$ is
cbse
class12
ch9
sec-a
q75
p201
objective
exemplar
difficult
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
The solution of the differential equation $\large\frac{dy}{dx}$$=e^{x-y}+x^2e^{-y}$ is
cbse
class12
ch9
sec-a
q74
p201
objective
exemplar
easy
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
The general solution of the differential equation $(e^x+1)ydy=(y+1)e^xdx$ is
cbse
class12
ch9
sec-a
q73
p201
objective
exemplar
difficult
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
Solution of the differential equation $\large\frac{dy}{dx}+\frac{y}{x}$$=\sin x$ is:
cbse
class12
ch9
sec-a
q72
p201
objective
exemplar
difficult
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
General solution of $\frac{dy}{dx} + y\tan x = \sec x$ is
cbse
class12
ch9
sec-a
q71
p201
objective
exemplar
medium
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
Which of the following is the general solution of $\large\frac{d^2y}{dx^2}$$-2\large\frac{dy}{dx}$$+y=0$
cbse
class12
ch9
sec-a
q70
p200
objective
exemplar
medium
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
The differential equation of the family of curves $y^2=4a(x+a)$ is
cbse
class12
ch9
sec-a
q69
p200
objective
exemplar
medium
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
The order and degree of the differential equation $\bigg[1+\bigg(\large\frac{dy}{dx}\bigg)^2\bigg]=\bigg(\large\frac{d^2y}{dx^2}\bigg)$ are
cbse
class12
ch9
sec-a
q68
p200
objective
exemplar
easy
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
The order and degree of the differential equation $\bigg(\frac{d^3y}{dx^3}\bigg)^2+3\frac{d^2y}{dx^2}+2\bigg(\frac{dy}{dx}\bigg)^4=y^4$ are
cbse
class12
ch9
q67
p200
objective
exemplar
sec-a
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
The solution of $\large\frac{dy}{dx}$$+y=e^{-x},y(0)=0$ is
cbse
class12
ch9
sec-a
q66
p200
objective
exemplar
medium
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
The differential equation for which $y=a\cos x+b\sin x$ is a solution is \[(A)\;\frac{d^2y}{dx^2}+y=0 \quad (B)\;\frac{d^2y}{dx^2}-y=0 \quad (C)\;\frac{d^2y}{dx^2}+(a+b)y=0 \quad (D)\;\frac{d^2y}{dx^2}+(a+b)y=0\]
cbse
class12
ch9
sec-a
q65
p200
objective
exemplar
easy
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
The solution of the equation $(2y-1)dx-(2x+3)dy=0$ is\[(A)\;\frac{2x-1}{2y+3}=k \quad (B)\;\frac{2y+1}{2x-3}=k \quad (C)\;\frac{2x+3}{2y-1}=k \quad (D)\;\frac{2x-1}{2y+1}=k \]
cbse
class12
ch9
sec-a
q64
p199
objective
exemplar
medium
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
The general solution of the differential equation $\large\frac{dy}{dx} $$=e^{\large\frac{x^2}{2}}+xy$ is :\[(A)\;y=ce^{\large\frac{x^2}{2}} \quad (B)\;y=-ce^{\large\frac{x^2}{2}} \quad (C)\;y=(x+c)e^{\large\frac{x^2}{2}} \quad (D)\;y=(c-x)e^{\large\frac{x^2}{2}}\]
cbse
class12
ch9
sec-a
q63
p199
objective
exemplar
medium
math
asked
Jan 19, 2013
by
sreemathi.v
1
answer
The curve for which the slope of the tangent at any point is equal to the ratio of the abscissa to the ordinate of the point is
class12
cbse
ch9
sec-a
q62
p199
objective
exemplar
easy
jeemain
differential-equations
math
asked
Jan 19, 2013
by
sreemathi.v
1
answer
The general solution of $\large\frac{dy}{dx}$$=2xe^{x^2-y}$ is: \[(A)\;e^{x^2-y}=c \quad (B)\;e^{-y}+e^{x^2}=c \quad(C)\;e^y=e^{x^2}+c \quad (D)\;e^{x^2}+y=c\]
cbse
class12
ch9
sec-a
q61
p199
objective
exemplar
easy
math
asked
Jan 19, 2013
by
sreemathi.v
1
answer
Family $Y=Ax+A^3$ of curves will correspond to a differential equation of order \[(A)\;3\quad(B)\;2\quad(C)\;1\;(D)\;not\;defined\]
cbse
class12
ch9
sec-a
q60
p199
objective
exemplar
easy
math
asked
Jan 19, 2013
by
sreemathi.v
1
answer
The differential equation of the family of curves $x^2+y^2-2ay=0$,where a is arbitrary constant,is\[(A)\;(x^2-y^2)\frac{dy}{dx}=2xy \quad (B)\;2(x^2+y^2)\frac{dy}{dx}=xy \quad (C)\;2(x^2-y^2)\frac{dy}{dx}=xy \quad (D)\;2(x^2+y^2)\frac{dy}{dx}=2xy\]
cbse
class12
ch9
sec-a
q59
p199
objective
exemplar
medium
math
asked
Jan 19, 2013
by
sreemathi.v
1
answer
The solution of $x \large\frac{dy}{dx}$$+y=e^x$ is:\[(A)\;y=\frac{e^x}{x}+\frac{k}{x} \quad (B)\;y=xe^x+cx \quad (C)\;y=xe^x+k \quad (D)\;x=\frac{e^y}{y}-\frac{k}{y}\]
cbse
class12
ch9
q58
p198
objective
exemplar
sec-a
math
asked
Jan 19, 2013
by
sreemathi.v
1
answer
The solution of the differential equation $\cos x\sin y\;dx+\sin x\cos y\;dy=0$ is:
cbse
class12
ch9
sec-a
q57
p198
objective
exemplar
medium
math
asked
Jan 19, 2013
by
sreemathi.v
1
answer
$y=ae^{mx}+be^{-mx}$ satisfies which of the following differential equation?
cbse
class12
ch9
sec-a
q56
p198
objective
exemplar
easy
math
asked
Jan 18, 2013
by
sreemathi.v
1
answer
The integrating factor of the differential equation $\Large \frac{dy}{dx}\normalsize+y=\Large \frac{1+y}{x}$ is
cbse
class12
ch9
sec-a
q55
p198
objective
exemplar
easy
math
asked
Jan 18, 2013
by
sreemathi.v
1
answer
The solution of the differential equation $\Large \frac{dy}{dx}=\frac{1-y^2}{1-x^2}$ is:\begin{array}{1 1}(A)\;y=\tan^{-1}x & (B)\;y-x=k(1+xy)\\(C)\;x=tan^{-1}y & (D)\;\tan (xy)=k\end{array}
cbse
class12
ch9
sec-a
q54
p198
objective
exemplar
difficult
math
asked
Jan 18, 2013
by
sreemathi.v
1
answer
Integrating factor of the differential equation $\large\frac{dy}{dx}$$+y\tan x-\sec x=0$ is \begin{array}{1 1}(A)\;\cos x & (B)\;sec x\\(C)\;e^{\cos x} & (D)\;e^{\sec x} \end{array}
cbse
class12
ch9
sec-a
q53
p198
objective
exemplar
easy
math
asked
Jan 18, 2013
by
sreemathi.v
1
answer
The solution of $\Large \frac{dy}{dx}\normalsize +y=e^{-x},y(0)=0$ is:\begin{array}{1 1}(A)\;y=e^x(x-1) & (B)\;y=xe^{-x}\\(C)\;y=xe^{-x}+1 & (D)\;y=(x+1)e^{-x}\end{array}
cbse
class12
ch9
sec-a
q52
p197
objective
exemplar
medium
math
asked
Jan 18, 2013
by
sreemathi.v
1
answer
The degree of the differential equation $\large\frac{d^2y}{dx^2}+\bigg(\frac{dy}{dx}\bigg)^3$$+6y^5=0$ is\[(A)\;1\quad(B)\;2\quad(C)\;3\quad(D)\;5\]
cbse
class12
ch9
sec-a
q51
p197
objective
exemplar
easy
math
asked
Jan 18, 2013
by
sreemathi.v
1
answer
The general solution of $e^x\cos y\;dx-e^x\sin y\;dy=0$ is:\begin{array}{1 1}(A)\;e^x\cos y=c & (B)\;e^x\sin y=c\\(C)\;e^x=c\;\cos y & (D)\;e^x=c\;\sin y\end{array}
cbse
class12
ch9
sec-a
q50
p197
objective
exemplar
easy
math
asked
Jan 18, 2013
by
sreemathi.v
1
answer
The differential equation $y\Large \frac{dy}{dx}\normalsize+x=c$ represents:\begin{array}{1 1}(A)\;family \;of \;hyperbolas & (B)\;family \;of \;parabolas \\(C)\;family \;of \;ellipses & (D)\;family\; of \;circles\end{array}
cbse
class12
ch9
sec-a
q49
p197
objective
exemplar
medium
math
asked
Jan 18, 2013
by
sreemathi.v
1
answer
$\tan^{-1}x+\tan^{-1}y=c$ is the general solution of the differential equation:
cbse
class12
ch9
sec-a
q48
p197
objective
exemplar
easy
math
asked
Jan 18, 2013
by
sreemathi.v
1
answer
Integrating factor of the differential equation $(1-x^2)\Large \frac{dy}{dx}\normalsize -xy=1$ is \[(A)\;-x\quad(B)\;\frac{x}{1-x^2}\quad(C)\;\sqrt {1-x^2}\quad(D)\;\frac{1}{2}log(1-x^2)\]
cbse
class12
ch9
sec-a
q47
p197
objective
exemplar
difficult
math
asked
Jan 18, 2013
by
sreemathi.v
1
answer
Which of the following is a second order differential equation\begin{array}{1 1}(A)\;(y')^2+x=y^2 & (B)\;y' y''+y=\sin x\\(C)\;y'''+(y'')^2+y=0 & (D)\;y'=y^2\end{array}
cbse
class12
ch9
sec-a
q46
p197
objective
exemplar
easy
math
asked
Jan 18, 2013
by
sreemathi.v
1
answer
Page:
« prev
1
2
3
4
5
6
next »
Home
Ask
Tuition
Questions
Practice
Your payment for
is successful.
Continue
...