Email
Chat with tutors
Login
Ask Questions, Get Answers
Menu
X
home
ask
tuition
questions
practice
papers
mobile
tutors
pricing
X
Recent questions tagged objective
Questions
If $\overrightarrow{a}\times(\overrightarrow{b}\times \overrightarrow{c})+\overrightarrow{b} \times (\overrightarrow{c} \times \overrightarrow{a})+\overrightarrow{c} \times (\overrightarrow{a}\times \overrightarrow{b})=\overrightarrow{x}\times\overrightarrow{y} $ then
tnstate
class12
bookproblem
p266
objective
q29
asked
May 9, 2013
by
poojasapani_1
1
answer
If $\overrightarrow{p} ,\overrightarrow{q}$ and $\overrightarrow{p}+\overrightarrow{q}$ are vectors of magnitude $\lambda$ than the magnitude of $|\overrightarrow{p}-\overrightarrow{q}|$ is
tnstate
class12
bookproblem
p266
objective
q28
modelpaper
oct-2008
oct-2009
asked
May 9, 2013
by
poojasapani_1
1
answer
If $|\overrightarrow{a+b}|=|\overrightarrow{a-b}|$ then
tnstate
class12
bookproblem
p266
objective
q27
modelpaper
mar-2006
jun-2006
mar-2007
jun-2009
asked
May 9, 2013
by
poojasapani_1
1
answer
The area of the parallelogram having a diagonal $\overrightarrow{3i}+\overrightarrow{j}-\overrightarrow{k}$ and a side $\overrightarrow{i}-\overrightarrow{3j}+\overrightarrow{4k} $ is
tnstate
class12
bookproblem
p266
objective
q26
modelpaper
jun-2008
oct-2009
mar-2010
asked
May 9, 2013
by
poojasapani_1
1
answer
The vectors $\overrightarrow{2i}+\overrightarrow{3j}+\overrightarrow{4k} $ and $\overrightarrow{ai}+\overrightarrow{bj}+\overrightarrow{ck}$ are perpendicular when
tnstate
class12
bookproblem
p266
objective
q25
modelpaper
jun-2007
asked
May 9, 2013
by
poojasapani_1
1
answer
If $\overrightarrow{a}+{b}+{c}=0,|\overrightarrow{a}|=3, |\overrightarrow{b}|=4,|\overrightarrow{c}|=5$ then the angle between $\overrightarrow{a}$ and $\overrightarrow{b}$ is
tnstate
class12
bookproblem
p266
objective
q24
asked
May 9, 2013
by
poojasapani_1
1
answer
If $A=\large\frac{1}{3}$$\begin{bmatrix} 2 & 2 & 1 \\-2 & 1 & 2 \\1 & -2 & 2 \end{bmatrix}$ prove that $A^{-1}=A^T$.
tnstate
class12
bookproblem
p265
objective
q23
modelpaper
jun-2006
mar-2007
jun-2008
oct-2008
asked
May 8, 2013
by
poojasapani_1
1
answer
If $\overrightarrow{a}$ and $\overrightarrow{b} $ include an angle $120^{\circ}$ and their magnitude are $2$ and $\sqrt{3}$ then $\overrightarrow{a} .\overrightarrow{b} $ is equal to
tnstate
class12
bookproblem
p265
objective
q22
modelpaper
jun-2007
jun-2009
asked
May 8, 2013
by
poojasapani_1
1
answer
If $\overrightarrow{a}$ and $\overrightarrow{b}$ are two unit vectors and $\theta $is the angle between them, then $(\overrightarrow{a}+\overrightarrow{b})$ is a unit vector if
tnstate
class12
bookproblem
p265
objective
q21
modelpaper
oct-2006
oct-2007
mar-2008
oct-2009
asked
May 8, 2013
by
poojasapani_1
1
answer
If $\overrightarrow{a}$ is a non-zero vector and $m$ is a non-zero scalar then $m\overrightarrow{a} $ is a unit vector if
tnstate
class12
bookproblem
p265
objective
q20
modelpaper
mar-2007
asked
May 8, 2013
by
poojasapani_1
1
answer
If the equation $-2x+y+z=i\;;x-2y+z=m\;;x+y-2z=n$ such that $i+m+n=0,$ then the system has
tnstate
class12
bookproblem
p265
objective
q19
modelpaper
mar-2006
jun-2006
asked
May 8, 2013
by
poojasapani_1
1
answer
If $ae^{x}+be^{y}=c; pe^{x}+qe^{y}=d $ and $\bigtriangleup_{1}=\begin{vmatrix} a&b \\p&q \end{vmatrix}; \bigtriangleup_{2}=\begin{vmatrix} c&b\\d&q \end{vmatrix}; \bigtriangleup_{3}=\begin{vmatrix} a&c\\p&d \end{vmatrix}$ than the value of $(x , y )$ is
tnstate
class12
bookproblem
p265
objective
q18
asked
May 7, 2013
by
poojasapani_1
0
answers
The system of equations $ax+y+z=0; x+by+z=0; x+y+cz=0 $ has a non-trivial solution then $\large\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}=$
tnstate
class12
bookproblem
p264
objective
q17
modelpaper
mar-2007
mar-2009
asked
May 7, 2013
by
poojasapani_1
1
answer
In a system of $3$ linear non-homogeneous equation with three unknowns,if $\bigtriangleup=0\;$ and $\;\bigtriangleup_{x}=0 ,\bigtriangleup_y\neq 0 $ and $ \bigtriangleup_z=0$ then the system has
tnstate
class12
bookproblem
p264
objective
q16
modelpaper
jun-2006
jun-2007
mar-2010
asked
May 7, 2013
by
poojasapani_1
1
answer
Inverse of $\begin{bmatrix}2& -1 \\-5 & 3 \end{bmatrix}$ is
tnstate
class12
bookproblem
p264
objective
q15
modelpaper
mar-2006
oct-2007
oct-2008
oct-2009
asked
May 7, 2013
by
poojasapani_1
1
answer
If $A$=$\begin{bmatrix} 0 & 0 \\0 & 5 \end{bmatrix}$, then $A^{12}$ is
tnstate
class12
bookproblem
p264
objective
q14
modelpaper
jun-2009
asked
May 7, 2013
by
poojasapani_1
1
answer
If $A$ and $B$ are any two matrices such that $AB=O$ and $A$ is non-singular, then
tnstate
class12
bookproblem
p264
objective
q13
modelpaper
mar-2007
oct-2007
mar-2008
mar-2009
asked
May 7, 2013
by
poojasapani_1
1
answer
If $I$ is the unit matrix of order $n$. Where$K\neq 0$ is a constsnt , then adj (KI)=
tnstate
class12
bookproblem
p264
objective
q12
asked
May 7, 2013
by
poojasapani_1
1
answer
If $A$ is a matrix of order $3$, then det($kA$)
tnstate
class12
bookproblem
p264
objective
q11
modelpaper
oct-2006
oct-2007
jun-2009
asked
May 7, 2013
by
poojasapani_1
1
answer
The inverse of the matrix $\begin{bmatrix} 0 & 0 & 1 \\0 & 1 & 0 \\1 & 0 & 0 \end{bmatrix}$ is
tnstate
class12
bookproblem
p264
objective
q10
asked
May 7, 2013
by
poojasapani_1
1
answer
If $A$ is a square matrix of order $n$ then |adj$A$| is
tnstate
class12
bookproblem
p264
objective
q9
modelpaper
mar-2006
jun-2006
asked
May 7, 2013
by
poojasapani_1
1
answer
If $A$=$\begin{bmatrix} 2 & 1 \\3 & 4 \end{bmatrix}$, than (adj $A)A$=
tnstate
class12
bookproblem
p263
objective
q8
modelpaper
mar-2007
jun-2007
oct-2008
asked
May 7, 2013
by
poojasapani_1
1
answer
If the matrix $\begin{bmatrix} -1 & 3 & 2 \\1 & k & -3 \\1 & 4 & 5 \end{bmatrix}$ has an inverse than the value of $k$
tnstate
class12
bookproblem
p263
objective
q7
modelpaper
oct-2006
oct-2009
asked
May 7, 2013
by
poojasapani_1
1
answer
If $A$ is a scalar matrix with scalar $k \neq 0$ of order $3$ than $A^{-1}$ is
tnstate
class12
bookproblem
p263
objective
q6
modelpaper
oct-2007
mar-2008
jun-2008
oct-2008
mar-2010
asked
May 7, 2013
by
poojasapani_1
1
answer
If the rank of the matrix$\begin{bmatrix} \lambda & -1 & 0 \\0 & \lambda & -1 \\-1 & 0 & \lambda \end{bmatrix}$ is $2$, than $\lambda$ is
tnstate
class12
bookproblem
p263
objective
q5
modelpaper
jun-2008
oct-2009
asked
May 7, 2013
by
poojasapani_1
1
answer
If A=$\begin{bmatrix} 2& 0& 1 \end{bmatrix}$ than the rank of $AA^{T}$is
tnstate
class12
bookproblem
p263
objective
q3
modelpaper
oct-2006
mar-2008
jun-2009
asked
May 6, 2013
by
poojasapani_1
1
answer
If A=$\begin{bmatrix} 1\\ 2 \\ 3 \end{bmatrix}$ than the rank of $AA^{T}$is
tnstate
class12
bookproblem
p263
objective
q4
modelpaper
mar-2009
asked
May 6, 2013
by
poojasapani_1
1
answer
The rank of the diagonal matrix $\begin{bmatrix} -1 & & \\ & -2 & \\ & & 0\\& & &-4\\ & & & &0 \end{bmatrix}$
tnstate
class12
bookproblem
p263
objective
q2
modelpaper
mar-2010
asked
May 6, 2013
by
poojasapani_1
1
answer
The rank of the matrix $\begin{bmatrix} 1 & -1 & 2 \\2 & -2 & 4 \\4 & -4 & 8 \end{bmatrix}$ is
tnstate
class12
bookproblem
p263
objective
q1
asked
May 6, 2013
by
poojasapani_1
1
answer
If $\;A=\small\frac{1}{\pi}$$\begin{bmatrix}sin^{-1}(\pi x) &tan^{-1}\big(\frac{\pi}{x}\big)\\ sin^{-1}\big(\frac{\pi}{x} \big)&cot^{-1}(\pi x)\end{bmatrix}\;$ and $\;B=\small\frac{1}{\pi} $$\begin{bmatrix}-cos^{-1}(\pi x) &tan^{-1}\big(\frac{x}{\pi}\big)\\ sin^{-1}\big(\frac{x}{\pi} \big)&-tan^{-1}(\pi x)\end{bmatrix}$ then $A-B$ is equal to
cbse
class12
ch3
q56
p60
objective
exemplar
easy
sec-a
math
jeemain
matrices-and-determinants
matrices
asked
Mar 10, 2013
by
sreemathi.v
1
answer
The solution of the differential equation $\large\frac{dy}{dx}+\frac{2xy}{(1+x^2)}=\frac{1}{(1+x^2)^2}$ is
cbse
class12
ch9
sec-a
q75
p201
objective
exemplar
difficult
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
The solution of the differential equation $\large\frac{dy}{dx}$$=e^{x-y}+x^2e^{-y}$ is
cbse
class12
ch9
sec-a
q74
p201
objective
exemplar
easy
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
The general solution of the differential equation $(e^x+1)ydy=(y+1)e^xdx$ is
cbse
class12
ch9
sec-a
q73
p201
objective
exemplar
difficult
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
Solution of the differential equation $\large\frac{dy}{dx}+\frac{y}{x}$$=\sin x$ is:
cbse
class12
ch9
sec-a
q72
p201
objective
exemplar
difficult
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
General solution of $\frac{dy}{dx} + y\tan x = \sec x$ is
cbse
class12
ch9
sec-a
q71
p201
objective
exemplar
medium
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
Which of the following is the general solution of $\large\frac{d^2y}{dx^2}$$-2\large\frac{dy}{dx}$$+y=0$
cbse
class12
ch9
sec-a
q70
p200
objective
exemplar
medium
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
The differential equation of the family of curves $y^2=4a(x+a)$ is
cbse
class12
ch9
sec-a
q69
p200
objective
exemplar
medium
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
The order and degree of the differential equation $\bigg[1+\bigg(\large\frac{dy}{dx}\bigg)^2\bigg]=\bigg(\large\frac{d^2y}{dx^2}\bigg)$ are
cbse
class12
ch9
sec-a
q68
p200
objective
exemplar
easy
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
The order and degree of the differential equation $\bigg(\frac{d^3y}{dx^3}\bigg)^2+3\frac{d^2y}{dx^2}+2\bigg(\frac{dy}{dx}\bigg)^4=y^4$ are
cbse
class12
ch9
q67
p200
objective
exemplar
sec-a
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
The solution of $\large\frac{dy}{dx}$$+y=e^{-x},y(0)=0$ is
cbse
class12
ch9
sec-a
q66
p200
objective
exemplar
medium
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
The differential equation for which $y=a\cos x+b\sin x$ is a solution is \[(A)\;\frac{d^2y}{dx^2}+y=0 \quad (B)\;\frac{d^2y}{dx^2}-y=0 \quad (C)\;\frac{d^2y}{dx^2}+(a+b)y=0 \quad (D)\;\frac{d^2y}{dx^2}+(a+b)y=0\]
cbse
class12
ch9
sec-a
q65
p200
objective
exemplar
easy
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
The solution of the equation $(2y-1)dx-(2x+3)dy=0$ is\[(A)\;\frac{2x-1}{2y+3}=k \quad (B)\;\frac{2y+1}{2x-3}=k \quad (C)\;\frac{2x+3}{2y-1}=k \quad (D)\;\frac{2x-1}{2y+1}=k \]
cbse
class12
ch9
sec-a
q64
p199
objective
exemplar
medium
math
asked
Jan 20, 2013
by
sreemathi.v
1
answer
The general solution of the differential equation $\large\frac{dy}{dx} $$=e^{\large\frac{x^2}{2}}+xy$ is :\[(A)\;y=ce^{\large\frac{x^2}{2}} \quad (B)\;y=-ce^{\large\frac{x^2}{2}} \quad (C)\;y=(x+c)e^{\large\frac{x^2}{2}} \quad (D)\;y=(c-x)e^{\large\frac{x^2}{2}}\]
cbse
class12
ch9
sec-a
q63
p199
objective
exemplar
medium
math
asked
Jan 19, 2013
by
sreemathi.v
1
answer
The curve for which the slope of the tangent at any point is equal to the ratio of the abscissa to the ordinate of the point is
class12
cbse
ch9
sec-a
q62
p199
objective
exemplar
easy
jeemain
differential-equations
math
asked
Jan 19, 2013
by
sreemathi.v
1
answer
The general solution of $\large\frac{dy}{dx}$$=2xe^{x^2-y}$ is: \[(A)\;e^{x^2-y}=c \quad (B)\;e^{-y}+e^{x^2}=c \quad(C)\;e^y=e^{x^2}+c \quad (D)\;e^{x^2}+y=c\]
cbse
class12
ch9
sec-a
q61
p199
objective
exemplar
easy
math
asked
Jan 19, 2013
by
sreemathi.v
1
answer
Family $Y=Ax+A^3$ of curves will correspond to a differential equation of order \[(A)\;3\quad(B)\;2\quad(C)\;1\;(D)\;not\;defined\]
cbse
class12
ch9
sec-a
q60
p199
objective
exemplar
easy
math
asked
Jan 19, 2013
by
sreemathi.v
1
answer
The differential equation of the family of curves $x^2+y^2-2ay=0$,where a is arbitrary constant,is\[(A)\;(x^2-y^2)\frac{dy}{dx}=2xy \quad (B)\;2(x^2+y^2)\frac{dy}{dx}=xy \quad (C)\;2(x^2-y^2)\frac{dy}{dx}=xy \quad (D)\;2(x^2+y^2)\frac{dy}{dx}=2xy\]
cbse
class12
ch9
sec-a
q59
p199
objective
exemplar
medium
math
asked
Jan 19, 2013
by
sreemathi.v
1
answer
The solution of $x \large\frac{dy}{dx}$$+y=e^x$ is:\[(A)\;y=\frac{e^x}{x}+\frac{k}{x} \quad (B)\;y=xe^x+cx \quad (C)\;y=xe^x+k \quad (D)\;x=\frac{e^y}{y}-\frac{k}{y}\]
cbse
class12
ch9
q58
p198
objective
exemplar
sec-a
math
asked
Jan 19, 2013
by
sreemathi.v
1
answer
The solution of the differential equation $\cos x\sin y\;dx+\sin x\cos y\;dy=0$ is:
cbse
class12
ch9
sec-a
q57
p198
objective
exemplar
medium
math
asked
Jan 19, 2013
by
sreemathi.v
1
answer
$y=ae^{mx}+be^{-mx}$ satisfies which of the following differential equation?
cbse
class12
ch9
sec-a
q56
p198
objective
exemplar
easy
math
asked
Jan 18, 2013
by
sreemathi.v
1
answer
Page:
« prev
1
...
3
4
5
6
7
8
9
10
next »
Home
Ask
Tuition
Questions
Practice
Your payment for
is successful.
Continue
...